Multilevel Methods - NNUM113
Title: Víceúrovňové metody
Guaranteed by: Department of Numerical Mathematics (32-KNM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2018
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Guarantor: doc. RNDr. Petr Mayer, Dr.
prof. RNDr. Ivo Marek, DrSc.
Classification: Mathematics > Numerical Analysis
Interchangeability : NMNV571
Is incompatible with: NMNV571
Is interchangeable with: NMNV571
Opinion survey results   Examination dates   Schedule   Noticeboard   
Annotation -
The course is devoted to solving systems of linear algebraic equations arising from discretization of second order PDE. The main emphasis is given to multigrid method and Schwarz domain decomposition method with coarse space. Some results for hierarchical basis and cascadic multigrid method are explained.
Last update: T_KNM (12.05.2004)
Aim of the course -

The course gives students a knowledge of different variants of multi-level methods.

Last update: T_KNM (16.05.2008)
Literature - Czech

W. Hackbusch: Multigrid Methods. Springer Verlag, Berlin-Heidelberg-New York, l988

W. Hackbusch, U. Trottenberg (eds.): Multigrid Methods, Lecture Notes in Mathematics, Vol. 96O, Springer Verlag Berlin-Heidelberg-New York, l982

P. Mayer: Víceúrovňové metody. Disertace, MFF UK, l995

Last update: T_KNM (18.05.2008)
Teaching methods -

Lectures in a lecture hall.

Last update: T_KNM (16.05.2008)
Requirements to the exam -

Student evaluation is based on examination only.

Last update: T_KNM (16.05.2008)
Syllabus -

Numerical solution of systems of linear algebraic equations arising from discretization of second order PDEs.

Multigrid method and Schwarz domain decomposition method with coarse space.

Hierarchical basis.

Cascadic multigrid method.

Last update: T_KNM (16.05.2008)
Entry requirements -

Knowledge of basics of linear algebra.

Last update: T_KNM (16.05.2008)