Approximate and Numerical Methods 2 - NNUM002
|
|
|
||
Finite element method for the numerical solution of linear elliptic partial differential equations.
Last update: T_KNM (18.05.2008)
|
|
||
To get basic knowledge on finite element methods and their applications for numerical realization of elliptic equations. Last update: HASLING/MFF.CUNI.CZ (30.04.2008)
|
|
||
Haslinger J.: Metoda konečných prvků pro řešení eliptických rovnic a nerovnic. Skripta MFF UK, SPN Praha, l98O. Last update: T_KNM (18.05.2008)
|
|
||
Lectures and tutorials in a lecture hall. Last update: T_KNM (18.05.2008)
|
|
||
Examination according to the syllabus. Last update: T_KNM (18.05.2008)
|
|
||
Abstract formulation of linear elliptic problems, Lax-Milgram theorem. Ritz-Galerkin method for approximations of abstract eliptic problems. A basic idea of finite element methods (FEM). Theory of approximations in Sobolev spaces. Application to Lagrange and Hermite interpolations. Convergence rate of approximate solutions, convergence rate in the L2-norm. Numerical integration in FEM. Last update: Haslinger Jaroslav, prof. RNDr., DrSc. (08.05.2006)
|
|
||
Basic knowledge of modern methods in PDE´s. Last update: HASLING/MFF.CUNI.CZ (30.04.2008)
|