SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Mathematical analysis I (CŽV) - NMUM801
Title: Matematická analýza I (CŽV)
Guaranteed by: Department of Mathematics Education (32-KDM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2018
Semester: winter
E-Credits: 5
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Is provided by: NMUM101
Guarantor: RNDr. Jakub Staněk, Ph.D.
Mgr. Zdeněk Halas, DiS., Ph.D.
Classification: Mathematics > Mathematics, Algebra, Differential Equations, Potential Theory, Didactics of Mathematics, Discrete Mathematics, Math. Econ. and Econometrics, External Subjects, Financial and Insurance Math., Functional Analysis, Geometry, General Subjects, , Real and Complex Analysis, Mathematics General, Mathematical Modeling in Physics, Numerical Analysis, Optimization, Probability and Statistics, Topology and Category
Incompatibility : NMUM101, NUMP001
Interchangeability : NMUM101, NUMP001
Annotation -
Basic course of mathematical analysis for prospective teachers.
Last update: Macharová Dana, JUDr. (10.10.2012)
Literature -
  • Veselý, J. Základy matematické analýzy I. Matfyzpress, Praha, 2004.
  • Veselý, J. Základy matematické analýzy II. Matfyzpress, Praha, 2009.
  • Kopáček, J. Matematická analýza nejen pro fyziky I. Matfyzpress, Praha, 2005.
  • Kopáček, J. Příklady z matematiky nejen pro fyziky I. Matfyzpress, Praha, 2004.
  • Černý, I. Úvod do inteligentního kalkulu. Academia, Praha, 2002.
  • Brabec, J. a kol. Matematická analýza I. SNTL/Alfa, Praha, 1985.
  • Jarník, V. Diferenciální počet I. Academia, Praha, 1974.
  • Trench, W. F. Introduction to Real Analysis. Available from http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF
  • Hairer, E., Wanner, G. Analysis by its History. Springer, 2008.

Last update: Macharová Dana, JUDr. (10.10.2012)
Syllabus -

Real numbers, supremum. Sequences and their limits. Functions, elementary functions. Continuity, properties of continuous functions. Derivative, mean value theorem and its corollaries, L'Hôpital's rule, Taylor's theorem, maxima and minima.

Last update: Macharová Dana, JUDr. (10.10.2012)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html