SubjectsSubjects(version: 957)
Course, academic year 2023/2024
   Login via CAS
Malliavin Calculus - NMTP561
Title: Malliavinův počet
Guaranteed by: Department of Probability and Mathematical Statistics (32-KPMS)
Faculty: Faculty of Mathematics and Physics
Actual: from 2023 to 2023
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, Czech
Teaching methods: full-time
Teaching methods: full-time
Note: the course is taught as cyclical
Guarantor: RNDr. Petr Čoupek, Ph.D.
Teacher(s): RNDr. Petr Čoupek, Ph.D.
Class: Pravděp. a statistika, ekonometrie a fin. mat.
M Mgr. PMSE
M Mgr. PMSE > Volitelné
Classification: Mathematics > Probability and Statistics
Pre-requisite : NMTP432
Annotation -
The lecture presents basic notions and applications of Malliavin calculus.
Last update: Omelka Marek, doc. Ing., Ph.D. (30.11.2020)
Aim of the course -

Students will get acquainted with basic results of Mallivin calculus.

Last update: Čoupek Petr, RNDr., Ph.D. (03.12.2020)
Course completion requirements -

Students need to pass an oral exam.

Last update: Čoupek Petr, RNDr., Ph.D. (03.12.2020)
Literature -

[1] Nualart, D., Nualart, E. Introduction to Malliavin Calculus, Cambridge University Press, 2018.

[2] Nualart, D. The Malliavin calculus and related topics, Springer-Verlag Berlin/Heidelberg, 2006.

[3] Nourdin, I., Peccati, G. Normal approximations with Malliavin calculus: From Stein’s method to universality, Cambridge University Press, 2012.

Last update: Čoupek Petr, RNDr., Ph.D. (03.12.2020)
Teaching methods -

Lecture.

Last update: Čoupek Petr, RNDr., Ph.D. (03.12.2020)
Requirements to the exam -

The exam is oral; the requirements correspond to the syllabus of the course to the extent in which it was presented during the lectures.

Last update: Čoupek Petr, RNDr., Ph.D. (03.12.2020)
Syllabus -

1. Isonormal Gaussian process.

2. Wiener chaos and multiple integrals.

3. Malliavin derivative and its adjoint.

4. Ornstein-Uhlenbeck semigroup.

5. Applications.

Last update: Čoupek Petr, RNDr., Ph.D. (03.12.2020)
Entry requirements -

Basic knowledge of stochastic analysis (Wiener process, stochastic integral) and functional analysis (Hilbert and Banach space, linear operator).

Last update: Čoupek Petr, RNDr., Ph.D. (03.12.2020)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html