|
|
|
||
The lecture presents basic notions and applications of Malliavin calculus.
Last update: Omelka Marek, doc. Ing., Ph.D. (30.11.2020)
|
|
||
Students will get acquainted with basic results of Mallivin calculus. Last update: Čoupek Petr, RNDr., Ph.D. (03.12.2020)
|
|
||
Students need to pass an oral exam. Last update: Čoupek Petr, RNDr., Ph.D. (03.12.2020)
|
|
||
[1] Nualart, D., Nualart, E. Introduction to Malliavin Calculus, Cambridge University Press, 2018. [2] Nualart, D. The Malliavin calculus and related topics, Springer-Verlag Berlin/Heidelberg, 2006. [3] Nourdin, I., Peccati, G. Normal approximations with Malliavin calculus: From Stein’s method to universality, Cambridge University Press, 2012. Last update: Čoupek Petr, RNDr., Ph.D. (03.12.2020)
|
|
||
Lecture. Last update: Čoupek Petr, RNDr., Ph.D. (03.12.2020)
|
|
||
The exam is oral; the requirements correspond to the syllabus of the course to the extent in which it was presented during the lectures. Last update: Čoupek Petr, RNDr., Ph.D. (03.12.2020)
|
|
||
1. Isonormal Gaussian process. 2. Wiener chaos and multiple integrals. 3. Malliavin derivative and its adjoint. 4. Ornstein-Uhlenbeck semigroup. 5. Applications. Last update: Čoupek Petr, RNDr., Ph.D. (03.12.2020)
|
|
||
Basic knowledge of stochastic analysis (Wiener process, stochastic integral) and functional analysis (Hilbert and Banach space, linear operator). Last update: Čoupek Petr, RNDr., Ph.D. (03.12.2020)
|