SubjectsSubjects(version: 970)
Course, academic year 2024/2025
   Login via CAS
Stochastic Differential Equations - NMTP543
Title: Stochastické diferenciální rovnice
Guaranteed by: Department of Probability and Mathematical Statistics (32-KPMS)
Faculty: Faculty of Mathematics and Physics
Actual: from 2021
Semester: winter
E-Credits: 6
Hours per week, examination: winter s.:4/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Additional information: http://simu0292.utia.cas.cz/seidler/teaching.html
Guarantor: RNDr. Jan Seidler, CSc.
Teacher(s): RNDr. Jan Seidler, CSc.
Class: M Mgr. PMSE
M Mgr. PMSE > Povinně volitelné
Classification: Mathematics > Differential Equations, Potential Theory, Probability and Statistics
Pre-requisite : {NMTP432 nebo NMFM408}
Is pre-requisite for: NSTP241, NMTP567
Is interchangeable with: NDIR041
Annotation -
The lectures are devoted to fundamental theorems on existence, uniqueness and properties of strong and/or weak solutions to stochastic differential equations. Knowledge of basic results from stochastic analysis is presupposed.
Last update: T_KPMS (16.05.2013)
Aim of the course -

Students will learn basic results from the theory of stochastic differential equations.

Last update: T_KPMS (16.05.2013)
Course completion requirements -

Oral exam.

Last update: Zichová Jitka, RNDr., Dr. (13.05.2023)
Literature - Czech

Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus. Springer Verlag, Berlin, 1988

Krylov, N.V.: Introduction to the theory of diffusion processes. American Math. Society, Providence, 1995.

Last update: T_KPMS (16.05.2013)
Teaching methods -

Lecture.

Last update: T_KPMS (16.05.2013)
Requirements to the exam -

Oral exam according to sylabus.

Last update: Zichová Jitka, RNDr., Dr. (13.05.2023)
Syllabus -

1. The Burkholder-Davis-Gundy inequality.

2. Linear equations.

3. Basic results on existence and uniqueness of strong solutions to equations with Lipschitz coefficients.

4. Representation of continuous martingales by time-changes and stochastic integrals.

Last update: Seidler Jan, RNDr., CSc. (27.09.2020)
Entry requirements -

Students should be acquainted with the basics of stochastic analysis: the Wiener process, continuous-time martingales, stochastic integrals, the Itô formula.

Last update: Seidler Jan, RNDr., CSc. (28.05.2019)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html