|
|
|
||
Didactic approach to teaching planimetry in upper secondary school.
Deepening and extending the secondary school planimetry curriculum with an
emphasis on the synthetic method of problem solving and appropriate
teaching methods.
Last update: Staněk Jakub, RNDr., Ph.D. (14.06.2019)
|
|
||
The course ends with credit and an exam.
Conditions for obtaining credit:
Last update: Moravcová Vlasta, RNDr., Ph.D. (21.02.2024)
|
|
||
Moravcová V., Hromadová J.: Základy planimetrie pro učitelské studium. Matfyzpress, Praha, 2021. (dostupné z: https://karlin.mff.cuni.cz/~morava/Zaklady_planimetrie.pdf)
Moravcová V., Hromadová J.: Sbírka úloh k Základům planimetrie pro učitelské studium. Matfyzpress, Praha, 2023. (dostupné z: https://karlin.mff.cuni.cz/~morava/Sbirka_planimetrie_final.pdf)
Kuřina F.: Deset pohledů na geometrii. MÚ AV ČR, Praha, 1996.
Eukleidovy Základy. Přeložil F. Servít, JČM, Praha, 1907.
Lávička M.: Syntetická geometrie. ZČU Plzeň, 2007.
Kadleček J.: Geometrie v rovině a v prostoru pro střední školy. Prometheus, Praha, 1996.
Pomykalová E.: Matematika pro gymnázia - planimetrie. Prometheus, Praha, 2008.
Hejný M.: Aj geometria naučila člověka myslieť. SPN, Bratislava, 1990. Last update: Moravcová Vlasta, RNDr., Ph.D. (06.03.2024)
|
|
||
The requirements for the exam correspond to the course syllabus to the extent that was presented in the lecture.
The exam can only be taken after the credit has been obtained.
The exam takes place orally and can be taken in one regular and two resit terms. Last update: Moravcová Vlasta, RNDr., Ph.D. (21.02.2024)
|
|
||
Basis of axiomatic approach in Euclidean geometry, structure of Euclidean geometry in school education. Theorems of plane geometry and their proofs. Properties and constructions of plane shapes. Transformations in a plane. Last update: Moravcová Vlasta, RNDr., Ph.D. (14.06.2019)
|