SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Robust Statistical Methods - NMST444
Title: Robustní statistické metody
Guaranteed by: Department of Probability and Mathematical Statistics (32-KPMS)
Faculty: Faculty of Mathematics and Physics
Actual: from 2024
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Is provided by: NMSA602
Guarantor: doc. Mgr. Stanislav Nagy, Ph.D.
Class: M Mgr. PMSE
M Mgr. PMSE > Povinně volitelné
Classification: Mathematics > Probability and Statistics
Co-requisite : NMSA407
Annotation -
Robust statistics aims at methods that are suitable for data with possible outlying values. The goal of this course is to introduce the main principles of robust statistics.
Last update: Omelka Marek, doc. Ing., Ph.D. (30.11.2020)
Aim of the course -

To understand principles of robust methods.

Last update: Omelka Marek, doc. Ing., Ph.D. (14.02.2023)
Course completion requirements -

Written and oral exam.

Last update: Zichová Jitka, RNDr., Dr. (03.06.2022)
Literature -

Huber, P. J.; Ronchetti, E. M. (2009). Robust statistics. Second edition. Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., Hoboken, NJ. xvi+354 pp.

Jurečková, J. (2001). Robustní statistické metody. Karolinum.

Maronna, R. A.; Martin, R. D.; Yohai, V. J. (2006). Robust statistics: Theory and methods. Wiley Series in Probability and Statistic. John Wiley & Sons, Ltd., Chichester, xx+436 pp.

Last update: Nagy Stanislav, doc. Mgr., Ph.D. (07.11.2023)
Teaching methods -

Lecture.

Last update: Omelka Marek, doc. Ing., Ph.D. (03.12.2020)
Requirements to the exam -

The requirements for the oral exam are in agreement with the syllabus of the course as presented during lectures.

Last update: Omelka Marek, doc. Ing., Ph.D. (14.02.2023)
Syllabus -

1. Classical and robust statistics - overview and main principles

2. Theoretical basics: the space of measures and its topology, functional derivatives

3. Statistical functional and its estimator, influence function, breakdown point

4. Basic types of estimators: M-estimators, Z-estimators, L-estimators, R-estimators

5. Minimax optimality of robust estimators of location

6. Further topics: Robust estimation of scale, robustness in regression, estimation for multidimensional data. Computational aspects.

Last update: Nagy Stanislav, doc. Mgr., Ph.D. (07.11.2023)
Entry requirements -

Basic knowledge of mathematical analysis, probability theory and mathematical analysis.

Last update: Nagy Stanislav, doc. Mgr., Ph.D. (07.11.2023)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html