SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Mathematical Modelling in Physics 1 - NMOD104
Title: Matematické modelování ve fyzice 1
Guaranteed by: Department of Numerical Mathematics (32-KNM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2018
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Guarantor: doc. RNDr. Jiří Felcman, CSc.
Classification: Mathematics > Mathematical Modeling in Physics
Incompatibility : NMNM334
Is co-requisite for: NMOD204
In complex interchangeability with: NMNM334
Annotation -
The subject of this course is to model some important processes in physics, technology and environment. This means the derivation of the basic equations of elasticity and fluid dynamics. Further, the porous media flows and the propagation of pollutions in fluids are modelled. Also some basic simplified but technically relevant models are derived from these equations and their solution is presented.
Last update: FEIST/MFF.CUNI.CZ (28.04.2008)
Aim of the course -

To give a knowledge of some mathematical models of physical processes

Last update: FEIST/MFF.CUNI.CZ (28.04.2008)
Literature -

Feistauer M.:Mathematical Methods in Fluid Dynamics, Longman Scientific-Technical, Harlow, l993

Nečas J.,Hlaváček I.: Mathematical Theory of Elastic and Elastico-Plastic Bodies, Elsevier, Amsterdam, 1981

Last update: T_KNM (16.05.2008)
Teaching methods -

Lectures in a lecture hall.

Last update: T_KNM (16.05.2008)
Requirements to the exam -

Examination according to the syllabus.

Last update: T_KNM (16.05.2008)
Syllabus -

Derivation of equations describing the flow:

Basic concepts of fluids, method of description of their motion, the transport theorem, basic physical laws (conservation of mass, mmomentum a nd energy) and their formulation in the form of partial differential equations, constitutive and rheological relations, equations of motion of general fluids, Euler and Navier-Stokes equations, basic cocepts of thermodynamics, laws of thermodynamics.

Formulation of boundary value problems of the theory of elasticity:

Stress tensor, conditions of equilibrium, finite strain tensor, small strain tensor, tensile test, generalized Hook's law, , Lamé and Beltrami-Michell equations, basic boundary value problems of elasticity.

Last update: T_KNM (16.05.2008)
Entry requirements -

basic knowledge from calculus

Last update: FEIST/MFF.CUNI.CZ (28.04.2008)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html