|
|
|
||
Methods for numerical continuation.
Last update: T_KNM (29.04.2015)
|
|
||
The subject is terminated by an oral examination. Last update: Janovský Vladimír, prof. RNDr., DrSc. (10.06.2019)
|
|
||
Govaerts, W.: Numerical methods for bifurcations of dynamical equilibria, SIAM 2000
Kuznetsov Y.A.: Elements of applied bifurcation theory, Appl. Math. Sci. 112, Spriger Verlag, New York 1998
Hale J., Kocak H.: Dynamics and bifurcations, Springer Verlag, New York 1991 Last update: Kučera Václav, doc. RNDr., Ph.D. (29.10.2019)
|
|
||
Oral exam according to syllabus. Last update: Janovský Vladimír, prof. RNDr., DrSc. (10.06.2019)
|
|
||
1) Motivation. Examples of dynamical systems. 2) Parameter dependent dynamical systems. Numerical continuation. 3) Dimensional reduction (singular point, corank, bifurcation equation, Lyapunov-Schmidt reduction). 4) Classification of singular points. Detection of singular points (test functions). 5) Steady states of dynamical systems (asymptotic stability, topological equivalence, Hartman-Grobman theorem). Continuation of branches of steady states, loss of stability. Last update: Kaplický Petr, doc. Mgr., Ph.D. (09.06.2015)
|
|
||
Bc in mathematics Last update: Janovský Vladimír, prof. RNDr., DrSc. (15.05.2018)
|