|
|
|
||
The course describes basic properties of elliptic curves over finite fields with regard to their use in cryptography.
Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (05.09.2024)
|
|
||
Zápočet bude udělen na základě vypracování domácích úkolů. Konání zkoušky je nezávislé na udělení zápočtu. Last update: Drápal Aleš, prof. RNDr., CSc., DSc. (03.02.2022)
|
|
||
I. Blake, G. Seroussi a N. Smart: Elliptic Curves in Cryptography, London Mathematical Society 265, Cambridge University Press, 2005
L. Washington: Elliptic Curves. Number Theory and Cryptography, Chapman & Hall/ CRC, 2003
hyperelliptic.org
A. Enge: Elliptic Curves and their Applications in Cryptography: An Introduction, Kluwer, Dordrecht 1999 Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (18.12.2018)
|
|
||
The exam consists of three parts: implementation of Schoof's algorithm, a short written test (10 questions on basic terminology and its application to easy examples), and an oral exam (discussion on one randomly choosen theoretical topic). Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (23.05.2025)
|
|
||
Weierstrass's normal form. Montgomery curves. Edwards curves. Representation by homogeneous coordinates. Birational equivalence. Addition on a curve. Number of points on the curve. Schoof algorithm. Choies of a suitable curve. Curve factoring. Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (23.05.2025)
|
|
||
Basics of commutative algebra on level of the course Commutative rings. Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (17.05.2019)
|