|
|
|
||
LLL algoritm and its application: Short vector problem is NP-hard, cryptosystem NTRU., constructions of hash
functions, Coppersmith's attack on RSA, knapsack-based cryptosystems.
Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (11.12.2018)
|
|
||
Oral exam and a homework posed at problem sessions. The essential part of the homework is of implementational character. Last update: Příhoda Pavel, doc. Mgr., Ph.D. (11.10.2022)
|
|
||
D. Stanovský, L. Barto: Počítačová algebra, Matfyzpress, Praha 2011.
C. Peikert: A Decade of Lattice Cryptography, internet, 2016. https://web.eecs.umich.edu/~cpeikert/pubs/lattice-survey.pdf
D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabilities. Journal of Cryptology, vol. 10, pp. 233-260, 1997.
M. Ajtai. Generating hard instances of lattice problems. Quaderni di Matematica, 13:1-32, 2004.
M. Ajtai. The shortest vector problem in L_2 is NP-hard for randomized reductions (extended abstract). In STOC, pages 10-19. 1998 Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (15.05.2020)
|
|
||
Oral exams consists of two questions. It is possible to do it either in present or distant form. Last update: Příhoda Pavel, doc. Mgr., Ph.D. (30.10.2020)
|
|
||
LLL algoritm and its applications - factorization of polynomials over Z, Coppersmith's attack on RSA with small public exponent, cryptanalysis of some knapsack-based cryptosystems.
Hash functions, Ajtai's worst case to average case reduction and its application to security proving. Short vector problem is NP-hard.
Cryptosystem NTRU.
Dicrete Gaussians and LWE, fully homomorphic encryption (optional) Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (15.05.2020)
|