SubjectsSubjects(version: 978)
Course, academic year 2025/2026
   Login via CAS
Introduction to machine learning - NMMB338
Title: Základy strojového učení
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2025
Semester: summer
E-Credits: 5
Hours per week, examination: summer s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: English
Teaching methods: full-time
Is provided by: NMFP436
Guarantor: RNDr. Karel Kozmík, Ph.D.
Mgr. Ondřej Týbl, Ph.D.
doc. RNDr. Michal Pešta, Ph.D.
Class: M Mgr. MMIB > Povinně volitelné
Classification: Informatics > Software Applications
Mathematics > Probability and Statistics
Co-requisite : NMMB343
Incompatibility : NMFP436
Interchangeability : NMFP436
Is incompatible with: NMFP436
Annotation -
Introduction to machine learning, motivation, examples of use.
Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (23.05.2025)
Aim of the course -

An introduction to basic machine learning principles and its use in practice.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (23.05.2025)
Course completion requirements -

Details can be found on the webpage: https://www2.karlin.mff.cuni.cz/~kozmikk/DS2.php

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (23.05.2025)
Literature -

Yoshua Bengio, Ian Goodfellow, Aaron Courville: Deep learning, MIT Press, In preparation.

Jürgen Schmidhuber: Deep learning in neural networks: An overview, Neural networks 61 (2015): 85-117.

Friedman, J. H. (March 1999): Stochastic Gradient Boosting, Computational Statistics and Data Analysis, vol. 38, pp. 367-378

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (23.05.2025)
Teaching methods -

Lecture + exercises.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (23.05.2025)
Requirements to the exam -

Exam will include solving a practical task in Python with discussion about selected algorithm, its theoretial background and results achived in the practical task. Student will receive a data set together with a description of the prediction task which needs to be solved. Course credit is required for examination.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (23.05.2025)
Syllabus -

Lectures:

• introduction to machine learning, motivation, examples

• general methods in machine learning: split of dataset to training and validation, over-fitting, regularization

• methods using decision trees: decision trees, random forest, gradient boosting

• methods using neural networks: simple neural networks, convolutional neural networks, recurrent neural networks

• clustering methods – supervised vs unsupervised

• other classification methods – support vector machine, naive Bayes

Practicals:

• Practicals will be held in computer lab and Python language will be used

• Machine learning algorithms will be applied on real data

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (23.05.2025)
Entry requirements -

Necessary:

  • Basic calculus: derivatives, integrals, Taylor expansion, etc.
  • Basic probability and statistics: probability distributions, central limit theorem, statistical tests and hypotheses, Fisher information, maximum likelihood estimators
  • Basic programming skills (in any language)

Good to know:

  • Python: some basics will be covered, but can be challenging if the student has no experience with Python

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (23.05.2025)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html