|
|
|
||
Required course for bachelor's program in Information security. The course contains description of algorithms
used in computer systems for symbolic manipulation. It begins with analysis of the simplest algebraic algorithms
and shows how to use theoretic results for their improvement. Algorithms for polynomials over integers, rational
numbers or finite fields are emphasized.
Last update: G_M (16.05.2012)
|
|
||
Zápočet student získá za odevzdání zadaných domácích úkolů. Na zadáních se domluvíme individuálně. Last update: Stanovský David, doc. RNDr., Ph.D. (28.09.2020)
|
|
||
L. Barto, D. Stanovský: Počítačová algebra, MatfyzPress, 2017.
V. Shoup: A Computational Introduction to Number Theory and Algebra, Cambridge University Press, 2nd edition 2008.
F. Winkler: Polynomial Algorithms in Computer Algebra, Springer 1996.
K. Geddes, S. Czapor, G. Labahn: Algorithms for computer algebra, Kluwer Academic Publishers, 1992.
G. von zur Gathen: Modern computer algebra, Cambridge Univ. Press 1999
D. Knuth: The art of computer programming, vol. 1, Fundamental algorithms, Addison-Wesley, 3rd edition 1997. Last update: Kazda Alexandr, RNDr., Ph.D. (19.02.2020)
|
|
||
Požadavky u zkoušky korespondují se sylabem přednášky a budou uplatňovány v rozsahu, ve kterém bylo téma prezentováno na přednášce. Zkouška bude ústní. Last update: Stanovský David, doc. RNDr., Ph.D. (28.09.2020)
|
|
||
1. Data representation, basic operations with numbers and polynomials, Karacuba's and extended Euclid's algorithm. 2. Modular representation, algorithms for Chinese Remainder Theorem. Fast Fourier transform, fast multiplication of polynomials. 3. Newton's method and fast division of polynomials. 4. Greatest common divisor: Primitive polynomials and Gauss' lemma, polynomial remainder sequences, modular algorithm.
Last update: Kazda Alexandr, RNDr., Ph.D. (08.02.2019)
|