SubjectsSubjects(version: 962)
Course, academic year 2024/2025
   Login via CAS
On Saturday 19th October 2024 there will be a shutdown of some components of the information system. Especially the work with files in Thesis modules will be particularly unavailable. Please postpone your requests for a later time.
Nonlinear Functional Analysis 2 - NMMA502
Title: Nelineární funkcionální analýza 2
Guaranteed by: Department of Mathematical Analysis (32-KMA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2024
Semester: summer
E-Credits: 5
Hours per week, examination: summer s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: English
Teaching methods: full-time
Teaching methods: full-time
Class: M Mgr. MA
M Mgr. MA > Povinné
Classification: Mathematics > Functional Analysis
Annotation -
Recommended for master students of mathematical analysis.  Content: Mountain pass lemma, topological degree, Leray-Schauder degree, monotone operatorsin a Hilbert space, nonlinear semigroups, bifurcations.
Last update: Pyrih Pavel, doc. RNDr., CSc. (09.06.2021)
Course completion requirements - Czech

Zápočet bude udělován za nadpoloviční účast na cvičeních. Kvůli koronaviru zápočet dostanou automaticky všichni.

Povaha kontroly studia předmětu vylučuje opravné termíny zápočtu.

Last update: Hencl Stanislav, prof. RNDr., Ph.D. (24.04.2020)
Literature - Czech

P. Drábek, J. Milota: Methods of nonlinear analysis. Applications to differential equations. Birkhäuser Verlag, Basel, 2007.

L. C. Evans: Partial differential equations. AMS, Providence, RI, 2010

Last update: T_KMA (02.05.2013)
Requirements to the exam - Czech

Zkouška je ústní, lze ji vykonat i distančně například po Skypu. Požadavky ke zkoušce odpovídají sylabu předmětu v rozsahu, jak byl probrán.

Last update: Hencl Stanislav, prof. RNDr., Ph.D. (24.04.2020)
Syllabus -

1. Weak convergence in L_1

characterization, biting lemma

2. Problems convex in the last variable

3. Generalized convexity (briefly)

rank-1 convexity, polyconvexity, kvaziconvexity

4. Mountain pass lemma

Ekeland variational principle, Palais-Smale condition

5. Nonlinear semigroup

6. Bifurcation

Crandall-Rabinowitz theorem, bifurcation from the point of spectrum with odd multiplicity, variational problem and bifurcation from the point of a spectrum with even multiplicity

Last update: Kaplický Petr, doc. Mgr., Ph.D. (09.06.2015)
Entry requirements -

Elements of linear functional analysis, elements of measure theory, theory of Lebesgue integral, function spaces.

Last update: Spurný Jiří, prof. RNDr., Ph.D., DSc. (10.05.2018)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html