SubjectsSubjects(version: 962)
Course, academic year 2024/2025
   Login via CAS
Topological Methods in Functional Analysis 2 - NMMA436
Title: Topologické metody ve funkcionální analýze 2
Guaranteed by: Department of Mathematical Analysis (32-KMA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2024
Semester: summer
E-Credits: 4
Hours per week, examination: summer s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Teaching methods: full-time
Guarantor: doc. RNDr. Petr Holický, CSc.
Class: M Mgr. MA
M Mgr. MA > Povinně volitelné
Classification: Mathematics > Functional Analysis, Topology and Category
Incompatibility : NRFA080
Interchangeability : NRFA080
Is interchangeable with: NRFA080
Annotation -
Differentiability of convex functions on Banach spaces. Recommended for master students of mathematical analysis.
Last update: T_KMA (02.05.2013)
Course completion requirements -

The exam is oral and its content covers the syllabus of this subject within the range presented by lectures.

Last update: Holický Petr, doc. RNDr., CSc. (10.05.2018)
Literature -

Phelps, Robert R. Convex functions, monotone operators and differentiability. Second edition. Lecture Notes in Mathematics, 1364. Springer-Verlag, Berlin, 1993.

Fabian, Marián J. Gâteaux differentiability of convex functions and topology. Weak Asplund spaces. Canadian

Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1997.

Last update: T_KMA (02.05.2013)
Syllabus -

Differentiability of convex functions, connections to fragmentability, Namioka's theorem on separate continuity, Asplund and weak Asplund spaces - characterizations and examples.

Last update: T_KMA (25.04.2013)
Entry requirements -

The knowledge of the introduction to functional analysis and topology is recommended.

Last update: Holický Petr, doc. RNDr., CSc. (10.05.2018)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html