Metric Spaces - NMMA360
|
|
|
||
Non-obligatory course for the first year of study. The aim of this lecture is to provide several results about metric
spaces that are deeper than in the basic course of mathematical analysis
and to define some notions from topology.
Last update: Pyrih Pavel, doc. RNDr., CSc. (04.05.2018)
|
|
||
Zkouška je ústní a její obsah odpovídá rozsahu, který je prezentován na přednášce. Last update: Pyrih Pavel, doc. RNDr., CSc. (04.05.2018)
|
|
||
Literatura bude upřesněna na začátku přednášky podle vybraného tématu. Last update: Pyrih Pavel, doc. RNDr., CSc. (04.05.2018)
|
|
||
1. Metric, metric spaces, continuous and uniformly continuous mappings, homeomorphism, isometry. Open and closed sets, interion, closure, boundary. Subspace, sum and product of metric spaces. 2. Totally bounded and separable metric spaces.
3. Complete metric spaces, completion, Cantor theorem, Baire theorem.
4. Compact metric spaces, Cantors discontinuum, Hilbert cube.
5. Connected metric spaces.
6. Hausdorff metric. Last update: Pyrih Pavel, doc. RNDr., CSc. (04.05.2018)
|