|
|
|
||
|
The third part of a four-semester course in calculus for bachelor's program Financial Mathematics.
Last update: Kaplický Petr, doc. Mgr., Ph.D. (30.05.2019)
|
|
||
|
Information available on pages
https://matematika.cuni.cz/pyrih-kalkulus.html Last update: Pyrih Pavel, doc. RNDr., CSc. (16.09.2025)
|
|
||
|
O. Hájková, M. Johanis, O. John, O. Kalenda, M. Zelený: Matematika J. Lukeš, J. Malý: Míra a integrál (Measure and integral) P. Holický, O. Kalenda: Metody řešení vybraných úloh z matematické analýzy pro 2. - 4. semestr J. Lukeš: Příklady k teorii Lebesgueova integrálu V. Jarník: Diferenciální počet I, II
Last update: Pyrih Pavel, doc. RNDr., CSc. (16.09.2025)
|
|
||
|
see
https://matematika.cuni.cz/pyrih-kalkulus.html Last update: Pyrih Pavel, doc. RNDr., CSc. (16.09.2025)
|
|
||
|
Information available on pages
https://matematika.cuni.cz/pyrih-kalkulus.html Last update: Pyrih Pavel, doc. RNDr., CSc. (16.09.2025)
|
|
||
|
1. ODE (a) 1st order (Separated variables, homogeneous, kinear, applications) (b) 2nd order (Linear, constant coefficients)
2. Sequences and series of functions (a) uniform convergence of series of functions (b) power series
3. Measure and integral (a) Introduction to measure theory (measurable representations, abstract Lebesgue integral, Lebesgue measure on R ^ n). (b) Multidimensional integral (Fubini's theorem, Substitution theorem, contents of shapes and volumes of bodies). (c) Swap integral order and limits, integral and series, or integral and derivative. (d) Gamma function and Beta function. (e) Lebesgue-Stieltjes integral. Last update: Pyrih Pavel, doc. RNDr., CSc. (10.03.2025)
|
|
||
|
To understand the material, it is suitable if the student has already completed the course Calculus 1. Last update: Pyrih Pavel, doc. RNDr., CSc. (14.09.2021)
|