SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Mathematical Analysis 2 - NMMA102
Title: Matematická analýza 2
Guaranteed by: Department of Mathematical Analysis (32-KMA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2024
Semester: summer
E-Credits: 10
Hours per week, examination: summer s.:4/4, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: prof. RNDr. Luboš Pick, CSc., DSc.
Teacher(s): RNDr. Daniel Cameron Campbell, Ph.D.
prof. RNDr. Miroslav Hušek, DrSc.
doc. RNDr. Michal Johanis, Ph.D.
RNDr. Kristýna Kuncová, Ph.D.
Oleksandr Minakov, Ph.D.
prof. RNDr. Luboš Pick, CSc., DSc.
Class: M Bc. MMIB
M Bc. MMIB > Povinné
M Bc. MMIB > 1. ročník
M Bc. MMIT
M Bc. MMIT > Povinné
M Bc. OM
M Bc. OM > Povinné
M Bc. OM > 1. ročník
Classification: Mathematics > Real and Complex Analysis
Co-requisite : NMMA101
Incompatibility : NMAA002
Interchangeability : NMAA002
Is pre-requisite for: NMMA261, NMMA263
Is interchangeable with: NMAA002
In complex pre-requisite: NMAG204, NMAG211, NMAG212, NMFM204, NMFM205, NMMA201, NMMA202, NMMA203, NMMA204, NMMA205, NMMA301, NMNM201, NMSA336
Is complex co-requisite for: NMSA211
Annotation -
The second part of a four-semester course in mathematical analysis for bachelor's programs General Mathematics and Information Security.
Last update: G_M (16.05.2012)
Course completion requirements -

Detailed information about conditions for credits and examination scheme are available in Czech language at the instructor's website

https://www.karlin.mff.cuni.cz/~pick/2024-2025-LS-pozadavky.pdf

Last update: Pick Luboš, prof. RNDr., CSc., DSc. (23.12.2024)
Literature -

Basic source:

lecture notes, collected examples and monograph in progress on the instructor's website.

Further reading:

V. Jarník: Diferenciální počet I, Academia 1984

V. Jarník: Diferenciální počet II, Academia 1984

B. P. Děmidovič: Sbírka úloh a cvičení z matematické analýzy, Fragment 2003

J. Milota: Matematická analýza I, 1. a 2. část (skriptum), MFF UK 1978

L. Zajíček: Vybrané úlohy z matematické analýzy pro 1. a 2. ročník, Matfyzpress 2006

J. Čerych a kol.: Příklady z matematické analýzy V (skriptum), MFF UK 1983

P. Holický, O. Kalenda: Metody řešení vybraných úloh z matematické analýzy pro 2.-4. semestr, Matfyzpress 2006

J. Lukeš a kol.: Problémy z matematické analýzy (skriptum), MFF UK 1982

I. Netuka, J. Veselý: Příklady z matematické analýzy III (skriptum), MFF UK 1977

W. Rudin: Principles of mathematical analysis, McGraw-Hill 1976

Last update: Pick Luboš, prof. RNDr., CSc., DSc. (23.12.2024)
Teaching methods - Czech

Přednáška i cvičení probíhají presenčně. Přednášky jsou nahrávány. Podrobné zápisky z přednášek jsou přístupné na stránce

https://www.karlin.mff.cuni.cz/~pick/2024-2025-ZS-prednaska.pdf

Videozáznamy přednášek jsou veřejně přístupné na stránce

https://www.karlin.mff.cuni.cz/~pick/2024-2025-LS-MA2-video.html

Last update: Pick Luboš, prof. RNDr., CSc., DSc. (23.12.2024)
Syllabus -
Series of real numbers

Elementary notions: convergence and divergence, a necessary condition, harmonic series.

Convergence tests: comparison, limiting comparison, Cauchy, d'Alembert, Leibniz.

Riemann's rearrangement theorem (without proof).

Cauchy product, Mertens theorem.

Complex series, complex exponential function.

Indefinite integral

Basic properties, arithmetics, change of variables, Darbouxova property of a derivative, integration by parts.

Integration of rational functions, useful substitutions.

Definite integral

Riemann integral: basic properties, Newton-Leibniz formula.

Newton integrál: calculation, change of variables, integration by parts.

Convergence of the Newton integral: comparison test, mean value theorems.

Application of definite integral: curve length, volume and surface area of a rotational body - intuitively, integral test for convergence of series.

Metric spaces Ia

Metric space, open and closed sets, ambient uclidean space as a metric space.

Convergence in metric spaces, continuous mappings, Heine theorem, composed map, aritmetic operations

Functions of several variables

Partial derivative and the derivative of a mapping from R^n to R^m, gradient, Jacobi matrix, mean value theorem, derivative of a composed mapping.

Metric spaces Ib

compact sets, charakterization of continuity, attainment of extremal values on a compact space.

Last update: Pick Luboš, prof. RNDr., CSc., DSc. (23.12.2024)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html