SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Discrete Mathematics - NMIN105
Title: Diskrétní matematika
Guaranteed by: Computer Science Institute of Charles University (32-IUUK)
Faculty: Faculty of Mathematics and Physics
Actual: from 2024
Semester: winter
E-Credits: 5
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Additional information: https://mj.ucw.cz/vyuka/2425/dm/
Guarantor: prof. RNDr. Jaroslav Nešetřil, DrSc.
Mgr. Martin Mareš, Ph.D.
Teacher(s): doc. RNDr. Jiří Fiala, Ph.D.
RNDr. Dominik Krasula
Bc. Ondřej Macháč
Mgr. Martin Mareš, Ph.D.
Mgr. Anna Mlezivová
Class: M Bc. FM
M Bc. FM > Povinné
M Bc. FM > 1. ročník
M Bc. MMIB
M Bc. MMIB > Povinné
M Bc. MMIB > 1. ročník
M Bc. MMIT
M Bc. MMIT > Povinné
M Bc. OM
M Bc. OM > Povinné
M Bc. OM > 1. ročník
Classification: Informatics > Discrete Mathematics
Mathematics > Discrete Mathematics
Incompatibility : NDMA005
Interchangeability : NDMA005
Is interchangeable with: NDMA005
Annotation -
Basic course in discrete mathematics for bachelor's program Mathematics. Elements of set theory (sets, relations), introduction to combinatorics and graph theory.
Last update: G_M (16.05.2012)
Course completion requirements - Czech

Pro zápočet je třeba získat 100 bodů z alespoň 150 možných udělovaných průběžně za písemné testy, řešení domácích úloh a další aktivity.

Z průběžné povahy kontroly neplyne nárok na vypisování opravných termínů testů ani zadání náhradních domácích úloh.

V důvodných případech (dlouhodobá nemoc, pobyt v zahraničí, apod.) může cvičící stanovit individuální podmínky na udělení zápočtu.

Zápočet je podmínkou pro konání zkoušky.

Last update: Tancer Martin, prof. RNDr., Ph.D. (02.10.2023)
Literature -

Jiří Matoušek, Jaroslav Nešetřil: Invitation to Discrete Mathematics; Oxford University Press; second edition(December 15, 2008)

Last update: Kynčl Jan, doc. Mgr., Ph.D. (04.02.2018)
Requirements to the exam - Czech

Zkouška je ústní s písemnou přípravou. Zkouší se znalost a porozumění teorii probrané na přednášce a schopnost na uplatnit ji při řešení příkladů.

Last update: Mareš Martin, Mgr., Ph.D. (13.10.2024)
Syllabus -

Basic techniques:

  • proof by contradiction
  • proof by induction
  • minimal counterexample
  • divisibility
  • congruences

Combinatorial counting:

  • counting strings with different properties
  • permutations and two views of them (order vs. bijection)
  • characteristic functions of subsets
  • k-element subsets and binomial coefficients
  • Binomial theorem and its consequences

Discrete probability:

  • example problems on probability
  • generalization: discrete probability space, elementary and compound events
  • conditional probability
  • total probability theorem (case analysis)
  • Bayes theorem
  • independence of events
  • product of probability spaces
  • random variable and its expectation

Principle of inclusion and exclusion:

  • the hatcheck lady problem (permutations with no fixed point)
  • principle of inclusion and exclusion
  • asymptotic bounds (factorial, binomial coefficients)

Graphs:

  • definition of a graph
  • examples of graphs
  • degree of a vertex, regular graphs, handshaking lemma
  • operations on graphs: adding a vertex/edge, subdividing/contracting an edge
  • isomorphism of graphs
  • a bound on the number of non-isomorphic graphs on N vertices
  • subgraphs and induced subgraphs
  • path in a graph, connectivity, connected components
  • distance in a graph, graph metric
  • weighted graphs
  • matrices of adjancency and incidence
  • powers of adjacency matrix count walks

Trees:

  • definition: a tree is a minimal connected graph
  • spanning tree of a graph
  • a tree is a connected acyclic graph
  • a tree on N vertices has N-1 edges
  • existence of leaves (average degree is smaller than 2)
  • adding/removing a leaf doesn't change if a graph is a tree; induction using leaves
  • equivalent characterizations of trees
  • rooted trees

Relations and functions:

  • ordered pairs and k-tuples
  • cartesian product of sets
  • relation
  • functions as relations
  • operations on relations (composition)

Equivalence relations:

  • properties of relations (reflexivity, symmetry, transitivity)
  • equivalence as a relation
  • examples of equivalences
  • characterization using equivalence classes

Orders:

  • partial and linear (total) order
  • minimum/maximum, minimal/maximal element, chain/antichain, supremum/infimum
  • on finite sets: existence of a minimal element, linear extension
  • isomorphism with respect to relations
  • product of orders, inclusion is a power of a 2-element order
  • existence of large chains/antichains
  • application: Erdős-Szekeres theorem on existence of monotone subsequences

Planar embedding of graphs:

  • informal definition of an embedding and its faces
  • paths and cycles are planar and so are trees
  • K_5 is non-planar
  • embedding in a sphere and stereographic projection
  • Euler formula
  • upper bound on the number of edges of a planar graph
  • existence of a vertex of degree at most 5
  • Kuratowski's theorem (without proof)
  • Platonic solids

Graph coloring:

  • history: the 4 color problem
  • duality of plane graphs, reduction of coloring of faces to coloring of vertices
  • proper coloring, chromatic number
  • 2-colorable graphs are those bipartite
  • coloring by induction: trees are 2-colorable, planar graphs are 6-colorable
  • the 5 color theorem

Graph properties:

  • walks and tours in graphs, Eulerian tours
  • existence of a closed Eulerian tour
  • directed graphs and multigraphs
  • strong and weak connectivity
  • Eulerian tours in directed multigraphs
  • Ramsey theorems
  • lower bound on Ramsey numbers (probabilistic method)

Last update: Mareš Martin, Mgr., Ph.D. (13.10.2024)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html