|
|
|
||
This course is focused on both theory and methods for solving basic optimization problems
frequently arising in economic, technical and scientific calculations (linear and quadratic
programming and some related topics).
Last update: G_I (26.10.2001)
|
|
||
To give explanation of standard optimization procedures. Students will practice their knowladge on numerical examples. Last update: T_KPMS (22.05.2008)
|
|
||
Pracovní text přednášky je k dispozici na WWW-stránce doc. Petra Lachouta.
Ján Plesník, Jitka Dupačová, Milan Vlach.: Lineárne programovanie. Alfa, Bratislava, 1990.
Vašek Chvátal: Linear programming. Freeman, New York, 1983.
Dimitri P. Bertsekas: Nonlinear programming. Athena Scientific, Belmont, 1999.
Charamza a kol.: Modelovací systém GAMS, MFF UK, 1993. Last update: T_KPMS (05.03.2007)
|
|
||
Lecture+exercises. Last update: G_M (27.05.2008)
|
|
||
1. Motivation. Optimization in real life. Local and global extremes. Convex sets and convex functions.
2. Linear programs. Features of the optimal solutions. Duality and its interpretation.
3. Numerical solution of linear programs. Transportation problem and particular integer programs.
4. Nonlinear programs. Local and global optimality conditions. Quadratic programming. A brief account to numerical algorithms.
Exercises: Developing of mathematical models of real-life problems. Solving of problems, partially in computer room. Practicing of basic experiences. Last update: T_KPMS (20.05.2003)
|