|
|
|
||
Basic undergraduate course of algebra.
Last update: T_KA (24.05.2003)
|
|
||
A. Drápal Text přednášky a příklady k procvičení (přednášející poskytne několik exemplářů k rozmnožení)
L. Bican Algebra I a II, MFF UK, skripta 1983
G. Birkhoff a T. C. Bartee: Aplikovaná algebra, Alfa Bratislava, 1981
G. Birkhoff a S. MacLane: Algebra, Alfa Bratislava, 1973
A. G. Kuroš: Kapitoly z obecné algebry, Academia Praha, 1968, 1977
L. Procházka, L. Bican, T. Kepka a P. Němec: Algebra, Academia Praha, 1990 Last update: Zakouřil Pavel, RNDr., Ph.D. (05.08.2002)
|
|
||
The first part of the basic course of algebra for students of computer science is devoted to basic algebraic notions that are demonstrated on basic algebraic structures. Basic notions include the closure system, the operations, the algebra (a set with operations), the homomorphism, the congruence, the ordering and the divisibility. Lattices, monoids, groups, rings and fields are regarded as the basic structures. The second part of the course is concerned with basic properties of rings, fields and lattices. The theory of rings is build far enough to enabl an abstract approach to rings of field polynomials. These rings are used to construct finite fields, whose structure receives a special attention in the course. The field theory is developed up to the construction of root and splitting fields, the lattice theory is restricted to basic properties of modular and modular lattices, and of Boolean algebras. Last update: T_KA (24.05.2003)
|