SubjectsSubjects(version: 978)
Course, academic year 2025/2026
   Login via CAS
An Introduction to Monoidal and Tensor Categories - NMAG479
Title: Úvod do monoidálních a tenzorových kategorií
Guaranteed by: Mathematical Institute of Charles University (32-MUUK)
Faculty: Faculty of Mathematics and Physics
Actual: from 2025
Semester: winter
E-Credits: 6
Hours per week, examination: winter s.:4/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: English
Teaching methods: full-time
Guarantor: Dr. Re O'Buachalla, Dr.
Teacher(s): Dr. Re O'Buachalla, Dr.
Class: M Mgr. MSTR
M Mgr. MSTR > Povinně volitelné
Classification: Mathematics > Mathematics General, Topology and Category
Is interchangeable with: NMAG471
Annotation -
Introduction to monoidal and tensor categories and their applications in modern mathematics. Beginning with a review of basic category theory, we then explore the theory of abelian categories, monoidal categories, rigid monoidal categories, tensor categories, and module categories. Moreover, we develop the dual theory of coalgebras, bialgebras, Hopf algebras, and quantum groups, with a strong emphasis on their categorical structures.
Last update: Šmíd Dalibor, Mgr., Ph.D. (11.06.2025)
Course completion requirements -

Oral exam.

Last update: Šmíd Dalibor, Mgr., Ph.D. (11.06.2025)
Literature -

1) T. Leinster: Basic Category Theory, Cambridge Studies in Advanced Mathematics 143, Cam-

bridge University Press, 2014. Available at arXiv:1612.09375.

2) S. MacLane: Categories for the Working Mathematician, Springer Verlag, Berlin, 1971

3) J. Adamek, H. Herrlich, G. Strecker: Abstract and Concrete Categories , John Wiley, New

York, 1990

4) Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, Victor Ostrik, Tensor Categories, AMS Mathematical Surveys and Monographs 205 (2015). ISBN: 978-1-4704-3441-0.

Last update: Šmíd Dalibor, Mgr., Ph.D. (11.06.2025)
Syllabus -

Review: Categories, functors, functor categories, adjunctions, (co)limits, abelian categories.

Monoidal categories: Definition and basic results, monoidal functors, MacLane’s theorems, rigid objects.

Tensor/multitensor categories: Unit objects, Grothendieck rings, fiber functors.

Coalgebras, bialgebras, Hopf algebras; quantum groups, pointed tensor categories.

Quasi-(bi)algebras, quasi-Hopf algebras, quantum traces; pivotal and spherical categories.

Basics of Module categories: definitions and basic results of module categories, exact module categories, algebras in categories, internal homs, categories of module functors, dual categories.

Last update: Šmíd Dalibor, Mgr., Ph.D. (11.06.2025)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html