SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Riemann Surfaces - NMAG433
Title: Riemannovy plochy
Guaranteed by: Mathematical Institute of Charles University (32-MUUK)
Faculty: Faculty of Mathematics and Physics
Actual: from 2023
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Guarantor: Dr. Re O'Buachalla, Dr.
Teacher(s): Dr. Re O'Buachalla, Dr.
Class: M Mgr. MA
M Mgr. MA > Povinně volitelné
M Mgr. MSTR
M Mgr. MSTR > Povinně volitelné
Classification: Mathematics > Geometry, Real and Complex Analysis
Annotation -
In the lecture, we deal mainly with topological and analytical properties of Riemann surfaces and holomorphic maps between them. Basic concepts we try to explain are covering, homotopic group, divisors, Čech cohomology and the Riemann-Roch theorem.
Last update: Lávička Roman, doc. RNDr., Ph.D. (13.09.2013)
Aim of the course -

Basic aspects (algebraic, function theoretic, geometric and topological) of Riemann surfaces.

Last update: Somberg Petr, doc. RNDr., Ph.D. (28.10.2019)
Course completion requirements -

Students should pass an examination.

Last update: Lávička Roman, doc. RNDr., Ph.D. (23.06.2021)
Literature -

Bost, J., From Number theory to Physics, Springer, 2010.

Forster, O., Lectures on Riemann surfaces, Springer-Verlag, Berlin, 1985.

Černý, I., Foundation of analysis in complex domain, Academia, 1997.

Narsimhan, R., Compact Riemann surfaces

Last update: Krýsl Svatopluk, doc. RNDr., Ph.D. (13.10.2017)
Teaching methods -

Lectures based on literature available.

Last update: Krýsl Svatopluk, doc. RNDr., Ph.D. (13.10.2017)
Requirements to the exam -

Requirements to the exam correspond to the syllabus to the extent to which topics were covered during the course.

Last update: Lávička Roman, doc. RNDr., Ph.D. (23.06.2021)
Syllabus -

Definition and examples of Riemann surfaces.

Holomorphic maps between Riemann surfaces. Meromorphic functions.

Riemann-Hurwitz theorem.

Elliptic functions. The Weierstrass p-function. Jacobi theta functions.

Classification of Riemann surfaces (Uniformization theorem).

Riemann-Roch theorem.

Last update: Lávička Roman, doc. RNDr., Ph.D. (13.09.2013)
Entry requirements -

Basics on complex variable functions (inclusive definition of Laurent polynomial of a holomorphic function).

Last update: Krýsl Svatopluk, doc. RNDr., Ph.D. (13.10.2017)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html