Universal Algebra 1 - NMAG405
Title: Universální algebra 1
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2022 to 2023
Semester: winter
E-Credits: 5
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: English, Czech
Teaching methods: full-time
Teaching methods: full-time
Additional information: https://www2.karlin.mff.cuni.cz/~stanovsk/vyuka/univalg.htm
Guarantor: doc. Mgr. Libor Barto, Ph.D.
Class: M Mgr. MSTR
M Mgr. MSTR > Povinné
Classification: Informatics > Theoretical Computer Science
Mathematics > Algebra
Incompatibility : NALG103
Interchangeability : NALG103
Is interchangeable with: NALG103
Opinion survey results   Examination dates   WS schedule   Noticeboard   
Annotation -
Basic course in universal algebra.
Last update: T_KA (09.05.2013)
Course completion requirements -

Zápočet - solving homeworks.

Exam (zkouška) - written test.

For details see http://www.karlin.mff.cuni.cz/~stanovsk/vyuka/univalg.htm

Last update: Stanovský David, doc. RNDr., Ph.D. (25.09.2018)
Literature -

Clifford Bergman: Universal algebra: Fundamentals and selected topics. Chapman and Hall, 2011.

Stanley N. Burris, H. P. Sankappanavar: A course in universal algebra. Springer-Verlag, 1981.

Ralph McKenzie, George McNulty, Walter Taylor: Algebras, Lattices, Varieties, vol. 1. Wadsworth and Brooks/Cole, 1987.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (06.09.2013)
Requirements to the exam -

Written test, for details see http://www.karlin.mff.cuni.cz/~stanovsk/vyuka/univalg.htm

Last update: Stanovský David, doc. RNDr., Ph.D. (07.10.2021)
Syllabus -

Basic notions and constructions in nniversal algebra.

Lattices.

Isomorphism theorems.

Direct and subdirect decomposition.

Varieties and equational theories.

Algebraic and relation clones.

Malcev conditions.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (06.09.2013)
Entry requirements -

Basics of general algebra.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (17.05.2019)