|
|
|
||
An advanced course in mathematical logic. It breifly recalls basic concepts and costructions. The main topic is the incompleteness and the undecidability, and Godel's theorems in particular.
A recommended course for specializations Mathematical Analysis and Mathematical
Structures within General Mathematics.
Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (05.09.2013)
|
|
||
Cílem je nahlédnout do problematiky logických základů matematiky a vyložit zejména algoritmickou nerozhodnutelnost Halting problému a Gödelovu větu o neúplnosti. Last update: Jeřábek Emil, Mgr. et Mgr., Dr., Ph.D. (02.10.2023)
|
|
||
Oral exam, see http://www.karlin.mff.cuni.cz/~krajicek/zk-mll.html Last update: Krajíček Jan, prof. RNDr., DrSc. (14.07.2019)
|
|
||
Lou van den Dries: Lecture notes on mathematical logic, https://www.karlin.mff.cuni.cz/~krajicek/vddries.pdf Michael Sipser: Introduction to the theory of computation, Thomson, 2006. René Cori and Daniel Lascar: Mathematical logic: A course with exercises (Part I and Part II), Oxford University Press, 2000. Joseph R. Shoenfield: Mathematical logic; Addison-Wesley Publishing Company, London, 1967.
Last update: Jeřábek Emil, Mgr. et Mgr., Dr., Ph.D. (02.10.2023)
|
|
||
Viz http://www.karlin.mff.cuni.cz/~krajicek/zk-mll.html Last update: Krajíček Jan, prof. RNDr., DrSc. (14.07.2019)
|
|
||
A review of basics of first-order logic, including elements of model theory. Turing machines, the universal machine, the undecidability of the halting problem. Peano arithmetic PA, Gödel’s theorems, formalization of syntax in PA.
See also https://users.math.cas.cz/~jerabek/teaching/mathlog/mathlog.html and https://www.karlin.mff.cuni.cz/~krajicek/mll.html Last update: Jeřábek Emil, Mgr. et Mgr., Dr., Ph.D. (30.09.2024)
|
|
||
This is an informal continuation of NMAG162 Introduction of mathematical logic. The students are expected to understand basic syntactic and semantic properties of propositional and predicate logics. Last update: Stanovský David, doc. RNDr., Ph.D. (25.09.2018)
|