SubjectsSubjects(version: 945)
Course, academic year 2023/2024
   Login via CAS
Linear Algebra 2 - NMAG112
Title: Lineární algebra 2
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2023 to 2023
Semester: summer
E-Credits: 10
Hours per week, examination: summer s.:4/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Additional information:
Guarantor: doc. RNDr. Jan Šťovíček, Ph.D.
Class: M Bc. FM
M Bc. FM > Povinné
M Bc. FM > 1. ročník
M Bc. MMIB > Povinné
M Bc. MMIB > 1. ročník
M Bc. MMIT > Povinné
M Bc. OM
M Bc. OM > Povinné
M Bc. OM > 1. ročník
Classification: Mathematics > Algebra
Co-requisite : NMAG111
Incompatibility : NALG002, NMAG102, NMAG114
Interchangeability : NALG002, NMAG102
Is incompatible with: NMAG114, NMAG102
Is interchangeable with: NMAG114, NMAG102
In complex pre-requisite: NMAG201, NMAG202, NMAG206, NMAG211, NMFM202, NMNM331, NMSA336
Annotation -
Last update: doc. Ing. Marek Omelka, Ph.D. (30.05.2023)
The second introductory lecture in linear algebra for General Mathematics, and Information Security
Course completion requirements -
Last update: doc. RNDr. Jan Šťovíček, Ph.D. (16.02.2024)

See the website of the course.

Literature -
Last update: doc. RNDr. David Stanovský, Ph.D. (10.02.2023)

C.D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM 2000.

T.S. Blyth, E.F. Robertson, Basic Linear Algebra, Springer Verlag London,2002,

S.H. Friedberg, A.J. Insel, L.E.Spence, Linear Algebra, Third Edition, Prentice-Hall, Inc., 1997

L. Barto, J. Tůma, Lineární algebra a geometrie, elektronická skripta

Requirements to the exam -
Last update: doc. RNDr. Jan Šťovíček, Ph.D. (16.02.2024)

See the website of the course.

Syllabus -
Last update: doc. RNDr. David Stanovský, Ph.D. (10.02.2023)
  • standard and abstract scalar product, orthogonal basis, Gram-Schmidt orthogonalization,
  • orthogonal and unitary mappings and matrices, rotations (especially in 3D), group properties,
  • eigenvalues, eigenvectors, diagonalization, Jordan canonical form,
  • unitary and orthogonal diagonalization, spectral theorems, singular value decomposition,
  • bilinear and quadratic forms, their matrix, orthogonalization, inertia theorem,
  • geometry in R3

Charles University | Information system of Charles University |