Mathematics for Physicists II - NMAF004
|
|
|
||
Basic mathematics course for 2nd year students of physics.
Prerequisities: Mathematical analysis I+II and Linear algebra I+II.
Last update: T_KMA (13.05.2003)
|
|
||
Kopáček, J. a kol.: Matematika pro fyziky, díly III-V, skriptum MFF UK Last update: Zakouřil Pavel, RNDr., Ph.D. (05.08.2002)
|
|
||
Introduction to the complex analysis - holomorfic function, Cauchy-Riemann equations, line integral in the complex domain, primitive function. Cauchy theorem, Cauchy formula, Liouville theorem. Taylor series, function holomorfic between circular contours, isolated singularities, Laurent series. Residue and Residue theorem. Conformal mapping.
Fouries series - trigonometric series, pointwise and uniform convergence, orthogonality, completeness. Bessel inequality, Parseval inequality. Criteria of convergence. L^2 space, Hilbert space, Fourier series in Hilbert space.
Fourier and laplace transform - definition, properties, calculus. Last update: T_KMA (13.05.2003)
|