|
|
|
||
A continuation of the course Measure and Integration Theory I.
Last update: T_MUUK (28.04.2008)
|
|
||
Abstract integration and measure theory as a basis for the study of modern mathematical analysis and probability theory. Integral calculus. Last update: T_MUUK (28.04.2008)
|
|
||
W. Rudin: Analýza v reálném a komplexním oboru, Academia, Praha, 2003
J. Lukeš, J. Malý: Míra a integrál (Measure and integral), skripta MFF
J. Kopáček: Matematická analýza pro fyziky III, skripta MFF
J. Lukeš: Příklady z matematické analýzy I. Příklady k teorii Lebesgueova integrálu, skripta MFF
I. Netuka, J. Veselý: Příklady z matematické analýzy. Míra a integrál, skripta MFF
Last update: T_MUUK (24.04.2008)
|
|
||
lecture and exercises Last update: T_MUUK (28.04.2008)
|
|
||
1. Measure theory.
Construction of Lebesgue measure. Product of measures, abstract Fubini theorem.
2. Integrals depending on a parameter.
Continuity, differentiation. Applications in calculus, Gamma function and Beta function.
3. Integral calculus in R^n.
Fubini's theorem in R^n. Change of variables. Polar, spherical and cylindrical coordinates. Laplace integral.
Last update: T_MUUK (28.04.2008)
|