SubjectsSubjects(version: 978)
Course, academic year 2025/2026
   Login via CAS
Quantum Field Theory at Finite Temperature - NJSF030
Title: Kvantová teorie pole při konečné teplotě
Guaranteed by: Institute of Particle and Nuclear Physics (32-UCJF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2022
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Guarantor: doc. RNDr. Jiří Dolejší, CSc.
Classification: Physics > Nuclear and Subnuclear Physics
Annotation -
The parallels between the statistical physics and the quantum field theory. The technique of the functional integral. The perturbative expansion of partition function, diagrammatics. Applications to specific problems according to interests of students: e.g. QCD, kvark-gluon plasma.
Last update: T_UCJF (21.05.2001)
Course completion requirements - Czech

Složení ústní zkoušky.

Last update: Krtička Milan, prof. Mgr., Ph.D. (10.06.2019)
Literature -

Kapusta: Finite Temperature Field Theory. Cambridge Univ. Press 1989

Parisi: Statistical Field Theory. Addison-Wesley 1988

Negele, H. Orland: Quantum Many-Particle Systems. Addison-Wesley 1988

Fetter, J. D. Walecka: Quantum Theory of Many-Particle Systems. McGraw-Hill 1971

Last update: T_UCJF (19.03.2015)
Requirements to the exam - Czech

Zkouška je ústní, může zahrnovat i prezentaci řešení zadaného problému či úlohy.

Last update: Dolejší Jiří, doc. RNDr., CSc. (11.10.2017)
Syllabus -

The partition function of a quantum system expressed in terms of the functional integral, Bosons and fermions. The relations to the "standard" field theory (at zero temperature), real and imaginary time.

The perturbation expansion of the partition function, the diagrammatic representation. Renormalization, the renormalization group.

Some applications, e.g. the photon gas (QED), spontaneous breakdown and restoration of symmetries in gauge theories, the Higgs model.

Further applications according to interests of students.

References Kapusta: Finite Temperature Field Theory. Cambridge Univ. Press 1989

Parisi: Statistical Field Theory. Addison-Wesley 1988

Negele, H. Orland: Quantum Many-Particle Systems. Addison-Wesley 1988

Fetter, J. D. Walecka: Quantum Theory of Many-Particle Systems. McGraw-Hill 1971

Last update: T_UCJF (26.05.2003)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html