SubjectsSubjects(version: 970)
Course, academic year 2024/2025
   Login via CAS
Continuum Mechanics - NGEO078
Title: Mechanika kontinua
Guaranteed by: Department of Geophysics (32-KG)
Faculty: Faculty of Mathematics and Physics
Actual: from 2021
Semester: summer
E-Credits: 4
Hours per week, examination: summer s.:2/1, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech, English
Teaching methods: full-time
Guarantor: prof. RNDr. Ondřej Čadek, CSc.
Incompatibility : NGEO111
Interchangeability : NGEO111
Is incompatible with: NGEO111
Is interchangeable with: NGEO111
Annotation -
Continuum mechanics is a theoretical ground for solving many problems of basic and applied research. The lecture provides the basics of the continuum mechanics theory and describes practical applications of its use.
Last update: T_KG (09.05.2013)
Aim of the course -

The lecture provides the basics in continuum mechanics and describes its use in basic and applied research.

Last update: T_KG (09.05.2013)
Course completion requirements - Czech

Zápočet: Včasné vypracování šesti domácích úkolů a získání alespoň 50% bodů z písemky, která se píše po odpřednášení částí 1-8.

Zkouška probíhá ústní formou. V případě, že zápočtová písemka je hodnocena známkou 1, je studen/ka zkoušen/a především z částí 9-11.

Last update: Čadek Ondřej, prof. RNDr., CSc. (06.10.2017)
Literature - Czech

Studenti před každou přednáškou dostanou vytištěné shrnutí přednášky v rozsahu cca 10 až 15 stran, do kterého si mohou vpisovat svoje poznámky. Většina učiva je přehledně shrnuta v elektronickém, anglicky psaném skriptu Z. Martince Continuum mechanics (http://geo.mff.cuni.cz/studium/Martinec-ContinuumMechanics.pdf).

Last update: Čadek Ondřej, prof. RNDr., CSc. (06.10.2017)
Teaching methods -

Lecture + exercises

Last update: T_KG (11.04.2008)
Syllabus -

1. Geometry of deformation, Eulerian and Lagrangian frames, displacement, strain tensor.

2. Material and spatial time derivative. Reynolds transport theorem.

3. Body and surface forces. Stress tensor.

4. Conservation laws in global and local scale, continuity and momentum equations.

5. Constitutive relationships. Elastic, viscous and plastic deformation.

6. Law of energy conservation. Entropy. Dissipation of mechanical energy. Thermal convection.

7. Mathematically correct formulation of continuum mechanics problems. Boundary conditions.

8. Pre-stressed media, thermal stresses, phase transitions.

9. Thin shell approximation of basic equations, membranes, shallow water approximation.

10. Applications: flow of oceans and atmosphere, sub-solidus flow of rocks and ices, viscoelastic liquids etc.

11. Numerical methods to solve the continuum mechanics problems.

12. Unsolved questions and open problems in continuum mechanics theory.

Last update: Čadek Ondřej, prof. RNDr., CSc. (07.01.2019)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html