SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Dynamics of Mantle and Lithosphere - NGEO035
Title: Dynamika pláště a litosféry
Guaranteed by: Department of Geophysics (32-KG)
Faculty: Faculty of Mathematics and Physics
Actual: from 2016
Semester: winter
E-Credits: 6
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Guarantor: doc. RNDr. Hana Čížková, Ph.D.
Teacher(s): doc. RNDr. Hana Čížková, Ph.D.
Classification: Physics > Geophysics
Annotation -
Heat sources in the Earth. Basic equations of thermal convection. Thermal convection as a nonlinear dynamic system. Thermal models of the Earth. Radioactivity of the rocks, radiometric dating.
Last update: T_KG (09.05.2013)
Aim of the course -

Understanding general principles of heat transport in continuum and application on thermal models of the Earth. Students will learn basic equations describing mantle flow and methods of their solution.

Last update: Čížková Hana, doc. RNDr., Ph.D. (20.11.2013)
Course completion requirements - Czech

Zápočet bude udělen na základě předložení písemné zprávy o výsledcích zadaných počítačových cvičení.

Last update: Čížková Hana, doc. RNDr., Ph.D. (06.10.2017)
Literature - Czech
  • C. Matyska, Mathematical Introduction to Geothermics and Geodynamics, předběžná verze učebního textu.
  • G.F. Davies, Dynamic Earth, Cambridge University Press, Cambridge 1999.
  • G. Schubert, D.L. Turcotte, P. Olson, Mantle convection in the Earth and planets, Cambridge University Press, 2001.

Last update: T_KG (09.05.2013)
Teaching methods -

Lecture + exercises

Last update: T_KG (09.05.2013)
Requirements to the exam - Czech

Zkouška je ústní, požadavky odpovídají sylabu v rozsahu prezentovaném na přednášce.

Last update: Čížková Hana, doc. RNDr., Ph.D. (06.10.2017)
Syllabus -
Heat transport in continuum

Basic equations - mass, momentum and energy conservation, rheology, state equation, boundary conditions. Individual terms of heat equation (temperature changes, heat conduction and advection, adiabatic heating/cooling, viscous dissipation, heat sources).

Thermal convection in the Earth mantle

Boussinesq approximation of basic equations. Dimensionless equations; Prandtl, Rayleigh and dissipation numbers. Boundary conditions. Static solution. Two-dimensional problem - stream function.

Basic characteristics of thermal convection

Linearised theory - onset of convection. Style of convection as a function of Rayleigh number. Effects of internal heating, rheology, phase transitions and compressibility. Chaos.

Parameters of heat equation

Thermal capacity and diffusivity, density, heat sources. Heat flux through the Earth surface.

Temperature in the mantle and core

Adiabatic gradient, estimates of mantle temperature. Iron melting temperature and inner-core boundary temperature. Temperature jump across the D“.

Hotspots

Distribution, origin. Interaction with the lithospheric plates. Reference system.

Thermal models of oceanic lithosphere

Half-space model. Analytical solution, surface heat flux, ocean depth. Heat released in subduction zones.

Earth radiactivity and geochronology

Alfa-, beta- and k-decay; P, Rb, Ar-methods; radiocarbon dating; age of the Earth.

Cooling of the Earth

Parameterised convection, scaling relations. Solution of the heat equation with decaying radiogenic heat sources.

Last update: T_KG (09.05.2013)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html