SubjectsSubjects(version: 978)
Course, academic year 2025/2026
   Login via CAS
Seismic Waves Propagation - NGEO002
Title: Šíření seismických vln
Guaranteed by: Department of Geophysics (32-KG)
Faculty: Faculty of Mathematics and Physics
Actual: from 2016
Semester: winter
E-Credits: 5
Hours per week, examination: winter s.:2/1, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Guarantor: doc. RNDr. Johana Prokop Brokešová, CSc.
Teacher(s): prof. RNDr. František Gallovič, Ph.D.
doc. RNDr. Johana Prokop Brokešová, CSc.
Classification: Physics > Geophysics
Annotation -
Equations of motion in inhomogeneous acoustic, elastic isotropic and anisotropic media. Lame potentials. Christoffel matrix. Plane waves, spherical waves, Weyl integral. Reflection/transmission of plane waves at plane interfaces. Reflection/transmission of spherical waves at plane interfaces - method of stationary phase and steepest descent. Head waves. Elastodynamic and acoustic Green function. Elastodynamic and acoustic representation theorems.
Last update: T_KG (16.05.2001)
Aim of the course -

Basics of propagation theory for plane and spherical seismic waves in elastic continuum and reflection-transmission problems at a structural interface.

Last update: T_KG (09.04.2008)
Course completion requirements - Czech

Podmínkou udělení zápočtu je absolvování písemného testu.

Získání zápočtu je podmínkou pro konání zkoušky.

Last update: Gallovič František, prof. RNDr., Ph.D. (06.10.2017)
Literature - Czech
  • Aki K., Richards P.G.: Quantitative seismology. Theory and methods. W.H. Freeman, San Francisco 1980
  • Červený V.: Seismic ray theory, Cambridge University Press, 2001

Last update: T_KG (19.01.2003)
Teaching methods -

Lecture + exercises

Last update: T_KG (11.04.2008)
Requirements to the exam - Czech

Zkouška je ústní, požadavky odpovídají sylabu v rozsahu prezentovaném na přednášce.

Last update: Gallovič František, prof. RNDr., Ph.D. (06.10.2017)
Syllabus -

1. Equations of motion. Initial and boundary conditions.

2. Plane waves. Time harmonic and transient waves in acoustic, elastic isotropic and anisotropic media. Analytic signal. Inhomogeneous plane waves.

3. Lame's potentials. Christoffel matrix.

4. Energy of elastic plane waves. Energy flux.

5. Spherical waves. Cylindric waves.

6. Weyl's and Sommerfeld's integral.

7. Reflection and transmission of seismic waves at interfaces. Boundary conditions at an interface. Slowness vectors of generated waves. Coefficients of reflection and transmission. R/T problem in acoustic, elastic isotropic and anisotropic media.

8. Rayleigh waves. Love waves.

9. Head waves.

10. Asymptotic integral expansions. Method of stationary phase. Method of steepest descent.

11. Reflection and transmission of spherical waves at an interface.

12. Green's tensor. Analytic solution in acoustic and elastodynamic case. Reciprocity.

13. Representation theorem. Kirchoff representation. Born approxiamtion.

14. Waves in dissipative media.

Bibliography

  • Aki K., Richards P.G.: Quantitative seismology. Theory and methods. W.H. Freeman, San Francisco 1980
  • Červený V.: Seismic ray theory, Cambridge University Press, 2001

Last update: T_KG (03.05.2002)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html