|
|
|
||
Theory of curves in Euclidean space, Frenet formulae, curvatures.
Surfaces in the three dimensional Euclidean space, the first and second
fundamental forms, main curvatures of surface, Gauss and mean curvature. Examples.
Christoffel symbols, Gauss and Codazzi equations, covariant derivation on surface,
parallel transport, geodesics, geodesic curvature. Lobatschewski plane and its geometry.
Last update: KRYSL/MFF.CUNI.CZ (13.05.2008)
|
|
||
Teaching of differential geometry of curves and surfaces. Last update: KRYSL/MFF.CUNI.CZ (13.05.2008)
|
|
||
[1] do Carmo, M., P., Differential geometry of curves and surfaces, Prentice Hall, 1976. [2] Klingenberg W., A., Course in differential geometry, GTM 51, Springer 1978. [3] Bures, J., Hrubcik, K., Diferencialni geometrie krivek a ploch, Karolinum, Praha, 1998. Last update: KRYSL/MFF.CUNI.CZ (13.05.2008)
|
|
||
Lecture and exercises. Last update: T_MUUK (23.04.2010)
|
|
||
Ke zkοušce je možno přistoupit jen po získání zápočtu. Last update: Šír Zbyněk, doc. RNDr., Ph.D. (01.05.2011)
|
|
||
A. INTRODUCTION 1. Motivation. The Euclidean space and its properties. 2. Differentiation in R^n. Tangent space, differential of a mapping.
B. CURVES
3. Definition and basic properties. Curvature and torsion. The Frenet frame, Frenet formulae and its applications. 4. Curves in plane and space.
C. SURFACES
5. Definition and basic properties. The first fundamental form. 6. Second fundamental form, Weingarten's mapping. 7. Curves on a surface, principal curvatures, Gauss and mean curvature. 8. Principal and asymptotic directions and curves, isometric surfaces. 9. Intrinsic geometry of a surface, geodetic curves. 10. Introduction to hyperbolic geometry. Last update: KRYSL/MFF.CUNI.CZ (13.05.2008)
|