SubjectsSubjects(version: 970)
Course, academic year 2024/2025
   Login via CAS
Mathematical Methods in Physics - NFUF106
Title: Matematické metody ve fyzice
Guaranteed by: Department of Physics Education (32-KDF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2022
Semester: summer
E-Credits: 4
Hours per week, examination: summer s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: doc. RNDr. Mgr. Vojtěch Žák, Ph.D.
RNDr. Marie Snětinová, Ph.D.
Teacher(s): RNDr. Marie Snětinová, Ph.D.
doc. RNDr. Mgr. Vojtěch Žák, Ph.D.
Classification: Physics > Teaching
Incompatibility : NUFY092
Interchangeability : NUFY092
Is interchangeable with: NUFY092
Annotation - Czech
Předmět Matematické metody ve fyzice je průpravným předmětem k vysokoškolským fyzikálním předmětům. Orientuje se jednak na hlubší pochopení integrálů a operátorů, jednak na dovednost využívat je při řešení fyzikálních problémů. Součástí výuky je také využití nástroje WolframAlpha k podpoře řešení problémů.
Last update: Houfková Jitka, RNDr., Ph.D. (19.01.2018)
Aim of the course - Czech

Cílem je, aby student získal znalost zavedení různých variant integrálů a operátorů a dovednost využít je efektivně při řešení fyzikálních problémů.

Last update: Houfková Jitka, RNDr., Ph.D. (26.01.2018)
Course completion requirements - Czech

Podmínkou udělení zápočtu je aktivní účast na alespoň 75 % cvičení, která prezenčně proběhla. Podmínkou složení zkoušky je alespoň částečné vyřešení dvou ze tří zadaných problémů, které jsou analogické problémům řešeným a diskutovaným ve výuce. Jedná se jak o problémy kvantitativní, tak o kvalitativní diskuzi. Součástí zkoušky je prověřování propojení nabytých znalostí se středoškolskou matematikou a fyzikou.

Last update: Houfková Jitka, RNDr., Ph.D. (14.05.2020)
Literature - Czech
  • Hladík, A. (1983). Pomocný učební text k průpravnému předmětu učitelského studia fyziky. Praha: MFF UK.
  • Kolář, P. (2016). Elektronická učebnice matematických metod fyziky (Diplomová práce). Praha: MFF UK. Dostupné na http://kdf.mff.cuni.cz/~zak/MMF_ucebnice.pdf
  • Kvasnica, J. (1989). Matematický aparát fyziky. Praha: Academia.
  • Elektronická Sbírka řešených úloh dostupná na http://reseneulohy.cz/cs/fyzika/matematicke-metody
  • Musilová, J., & Musilová, P. (2012). Matematika pro porozumění i praxi II/1. Brno: VUT v Brně, VUTIUM.
  • Musilová, J., & Musilová, P. (2012). Matematika pro porozumění i praxi II/2. Brno: VUT v Brně, VUTIUM.
  • Rektorys, K., et al. (2000). Přehled užité matematiky I. Praha: Prometheus.
  • Rektorys, K., et al. (2000). Přehled užité matematiky II. Praha: Prometheus.
  • Kopáček, J. (2008). Integrály. Praha: Matfyzpress.

Last update: Robová Jarmila, doc. RNDr., CSc. (25.05.2022)
Teaching methods - Czech

přednáška + cvičení

Last update: Houfková Jitka, RNDr., Ph.D. (19.01.2018)
Requirements to the exam - Czech

Podmínkou složení zkoušky je alespoň částečné vyřešení dvou ze tří zadaných problémů, které jsou analogické problémům řešeným a diskutovaným ve výuce. Jedná se jak o problémy kvantitativní, tak o kvalitativní diskuzi. Součástí zkoušky je prověřování propojení nabytých znalostí se středoškolskou matematikou a fyzikou.

Last update: Žák Vojtěch, doc. RNDr. Mgr., Ph.D. (04.05.2020)
Syllabus - Czech
  • Násobné integrály:

dvojný integrál - v kartézských, polárních a obecných souřadnicích, jeho matematické a fyzikální aplikace;

trojný integrál - v kartézských, cylindrických, sférických a obecných souřadnicích, jeho matematické a fyzikální aplikace.

  • Integrály I. druhu:

křivkový integrál I. druhu - pojem křivka a její parametrické vyjádření, délka oblouku křivky, výpočet z parametrického a explicitního vyjádření křivky, jeho matematické a fyzikální aplikace;

plošný integrál I. druhu - pojem plocha a její parametrické vyjádření, výpočet z parametrického a explicitního vyjádření plochy, jeho matematické a fyzikální aplikace.

  • Integrály II. druhu:

křivkový integrál II. druhu - výpočet, jeho aplikace (konzervativní pole, potenciál, mechanická práce, elektrické napětí);

plošný integrál II. druhu - výpočet, jeho aplikace (tok, zákony zachování).

  • Operátory:

úvod - křivočaré ortogonální souřadnice, Laméovy koeficienty;

zavedení operátorů bez využití souřadnic - gradient, divergence (Gaussova věta), rotace (Stokesova věta), Laplaceův operátor, jejich fyzikální význam a aplikace;

souřadnicové tvary operátorů gradient, divergence, rotace, Laplace - odvození v křivočarých ortogonálních souřadnicích (vyjádření speciálně v kartézských, cylindrických a sférických);

Kroneckerův a Levi-Civitův symbol pro operace s vektory a operátory - Einsteinovo sumační pravidlo, skalární, vektorový a smíšený součin, využití těchto symbolů k efektivní práci s operátory.

  • Tenzory (nepovinné téma):

zavedení pomocí transformací; zobecnění pojmů skalár a vektor.

Last update: Houfková Jitka, RNDr., Ph.D. (27.05.2022)
Learning resources - Czech

Je možné využít elektronickou sbírku řešených úloh: http://reseneulohy.cz/cs/fyzika/matematicke-metody

a elektronické učebnice dostupné na webových stránkách předmětu: https://www.mff.cuni.cz/cs/kdf/studenti/bc/nfuf106-804.

Učební text průběžně zveřejňovaný během semestru je dostupný v kurzu moodle (po zapsání se do kurzu): https://dl1.cuni.cz/course/view.php?id=17468.

Last update: Snětinová Marie, RNDr., Ph.D. (14.02.2025)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html