SubjectsSubjects(version: 970)
Course, academic year 2024/2025
   Login via CAS
Introduction to Finite Groups Theory - NALG052
Title: Úvod do teorie konečných grup
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2011
Semester: winter
E-Credits: 6
Hours per week, examination: winter s.:2/0, --- [HT]
summer s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Guarantor: prof. RNDr. Aleš Drápal, CSc., DSc.
Class: Algebra v informatice
Algebra v přírodních vědách
DS, algebra, teorie čísel a matematická logika
Classification: Mathematics > Algebra
Pre-requisite : NALG017
Annotation -
Abstract representation, cocycles and coboundaries, basic splitting theorems, Hall subgroups, Frattini subgroup, extraspecial groups, generalized Fitting subgroup. The subject can be taught in English.
Last update: T_KA (03.05.2004)
Literature - Czech

1. M. Aschbacher, Finite group theory, Cambridge University Press, 1986, 1988, 1993

2. Aleš Drápal, Teorie grup, základní aspekty, Karolinum, Praha, 2000

3. B. Huppert, Endliche Gruppen, Springer-Verlag, 1971

4. D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, 1982

5. J.J. Rotman, An Introduction to the Theory of Groups, Springer-Verlag, 1965, 1973, 1984, 1994

Last update: T_KA (03.05.2004)
Syllabus -

1. Representations, equivalences and quasiequivalences.

2. Semidirect products and grups with a normal cyclic subgroup.

3. Splitting, Schur-Zassenhaus Theorem, Hall subgroups.

4. Fratttini subgroup.

5. Groups with a maximal cyclic subgroup.

6. Extraspecial groups.

7. Central products.

8. Generalized Fitting subgroup.

9. Central extensions.

Last update: T_KA (21.05.2004)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html