Introduction to Finite Groups Theory - NALG052
|
|
|
||
Abstract representation, cocycles and coboundaries, basic splitting theorems, Hall subgroups, Frattini subgroup, extraspecial groups, generalized Fitting subgroup. The subject can be taught in English.
Last update: T_KA (03.05.2004)
|
|
||
1. M. Aschbacher, Finite group theory, Cambridge University Press, 1986, 1988, 1993 2. Aleš Drápal, Teorie grup, základní aspekty, Karolinum, Praha, 2000 3. B. Huppert, Endliche Gruppen, Springer-Verlag, 1971 4. D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, 1982 5. J.J. Rotman, An Introduction to the Theory of Groups, Springer-Verlag, 1965, 1973, 1984, 1994
Last update: T_KA (03.05.2004)
|
|
||
1. Representations, equivalences and quasiequivalences. 2. Semidirect products and grups with a normal cyclic subgroup. 3. Splitting, Schur-Zassenhaus Theorem, Hall subgroups. 4. Fratttini subgroup. 5. Groups with a maximal cyclic subgroup. 6. Extraspecial groups. 7. Central products. 8. Generalized Fitting subgroup. 9. Central extensions. Last update: T_KA (21.05.2004)
|