Universal Algebra 1,2 - NALG012
|
|
|
||
1 (spring term): Diagrams, limits, colimits, reflections, universal algebras, varieties of algebras, Birkhoff theorem, equational logic.
2 (winter term): Amalgamation and strong amalgamation, lattices of varieties, Mal'cev conditions, absolutely free algebras of terms, identities, arithmetic of terms, lattices of subalgebras and cogruences, Schreier's property.
Last update: G_M (11.10.2001)
|
|
||
S. Burris, Sankappanavar: Universal algebra. www.ams.org
J. Ježek: Univerzální algebra a teorie modelů. SNTL, Praha 1976 Last update: T_KA (26.04.2004)
|
|
||
Summer semester:
1. Diagrams, limits, colimits, reflections.
2. Universal algebras, varieties.
3. Birkhoff's theorem, equational logic.
Winter semester:
1. Amalgamation and strong amalgamation.
2. Lattices of varieties. Maltsev conditions.
3. Absolutely free algebras, terms, identities.
4. Lattices of subvarieties, congruence lattices.
5. Schreier property. Last update: T_KA (26.04.2004)
|