SubjectsSubjects(version: 957)
Course, academic year 2023/2024
   Login via CAS
Universal Algebra 1,2 - NALG012
Title: Univerzální algebra 1,2
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2005
Semester: summer
E-Credits: 12
Hours per week, examination: summer s.:2/2, C [HT]
winter s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Note: starts in summer semester and continues in winter semester of the next academic year
Guarantor: prof. RNDr. Jaroslav Ježek, DrSc.
prof. RNDr. Tomáš Kepka, DrSc.
Class: Algebra v informatice
Universální algebra a mat. logika
Classification: Mathematics > Algebra
Incompatibility : NMAI031
Pre-requisite : NALG027
Is incompatible with: NMAI031
Is interchangeable with: NMAI031
Annotation -
1 (spring term): Diagrams, limits, colimits, reflections, universal algebras, varieties of algebras, Birkhoff theorem, equational logic. 2 (winter term): Amalgamation and strong amalgamation, lattices of varieties, Mal'cev conditions, absolutely free algebras of terms, identities, arithmetic of terms, lattices of subalgebras and cogruences, Schreier's property.
Last update: G_M (11.10.2001)
Literature - Czech

S. Burris, Sankappanavar: Universal algebra. www.ams.org

J. Ježek: Univerzální algebra a teorie modelů. SNTL, Praha 1976

Last update: T_KA (26.04.2004)
Syllabus -

Summer semester:

1. Diagrams, limits, colimits, reflections.

2. Universal algebras, varieties.

3. Birkhoff's theorem, equational logic.

Winter semester:

1. Amalgamation and strong amalgamation.

2. Lattices of varieties. Maltsev conditions.

3. Absolutely free algebras, terms, identities.

4. Lattices of subvarieties, congruence lattices.

5. Schreier property.

Last update: T_KA (26.04.2004)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html