SubjectsSubjects(version: 962)
Course, academic year 2024/2025
   Login via CAS
Mathematics for Chemists II - MS710P04B
Title: Matematika pro chemiky II
Guaranteed by: Institute of Applied Mathematics and Information Technologies (31-710)
Faculty: Faculty of Science
Actual: from 2018
Semester: summer
E-Credits: 8
Examination process: summer s.:
Hours per week, examination: summer s.:4/4, C+Ex [HT]
Capacity: 150
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech
Is provided by: MS710P53
Note: enabled for web enrollment
Guarantor: RNDr. Naděžda Krylová, CSc.
Is incompatible with: MS710P03B, MS710P03A
Is pre-requisite for: MC260C11, MC260P02, MC260P35
Opinion survey results   Examination dates   Schedule   
Files Comments Added by
download POZLET11.doc Požadavky ke zkoušce RNDr. Naděžda Krylová, CSc.
download test-ukaz. MCHII_11.doc Ukázka testu RNDr. Naděžda Krylová, CSc.
Annotation -
As a continuation of the course from the previous term S710P04A the main focus will be improper integral, series and the calculus of functions of several variables.
Last update: Rubešová Jana, RNDr., Ph.D. (30.04.2002)
Literature - Czech

J. Štěpánek: Matematika pro přírodovědce I, II. Univerzita Karlova, Praha 1990.

N. Krylová, M. Štědrý: Sbírka příkladů z matematiky. PřF UK, Praha 1994.

A. Klíč a kolektiv: Matematika I. VŠCHT, Praha 1998.

D. Turzík a kolektiv: Matematika II. VŠCHT, Praha 1998.

Kolektiv autorů: Sbírka příkladů z matematiky. VŠCHT, Praha 1992.

Vojtěch Jarník: Diferenciální počet I. Academia, Praha 1963.

Vojtěch Jarník: Integrální počet I. Academia, Praha 1963.

Last update: Rubešová Jana, RNDr., Ph.D. (06.01.2003)
Syllabus -

1. Improper integrals.

2. Sequences and serier: convergence properties of sequences, infinit series of constants, nonnegative series - the integral, the comparison and the ratio tests, alternating series and absolute convergence, power series, Taylor series.

3. Differential calculus of several variables: the metric space En, vector-valued function of several variables, limits and continuity, partial derivatives and differentials, chain rules, the gradient, directional derivatives, Taylor´s theorem, extreme values, differentiation of implicit functions.

4. Multiple integral: double and triple integrals, evaluation - iterated integrals, integration in polar, cylindrical and spherical coordinates, applications.

5. Calculus of vector fields: vector fields, basic curves and surfaces in the space, line integrals, line integrals of vector fields, the fundamental theorem of line integrals, conservative vector fields and potencial functions, applications of line integrals.

Last update: Rubešová Jana, RNDr., Ph.D. (30.04.2002)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html