|
|
|
||
This course will cover basics of the linaer algebra and the calculus.
Last update: Rubešová Jana, RNDr., Ph.D. (30.04.2002)
|
|
||
J. Štěpánek: Matematika pro přírodovědce I, II. Univerzita Karlova, Praha 1990.
N. Krylová, M. Štědrý: Sbírka příkladů z matematiky. PřF UK, Praha 1994.
A. Klíč a kolektiv: Matematika I. VŠCHT, Praha 1998.
D. Turzík a kolektiv: Matematika II. VŠCHT, Praha 1998.
Kolektiv autorů: Sbírka příkladů z matematiky. VŠCHT, Praha 1992.
Vojtěch Jarník: Diferenciální počet I. Academia, Praha 1963.
Vojtěch Jarník: Integrální počet I. Academia, Praha 1963.
Last update: Rubešová Jana, RNDr., Ph.D. (06.01.2003)
|
|
||
1. Basic notions from linear algebra: vectors, the vector space Rn, linear mappings Rn into Rm, matrices, systems of linear equations, determinants.
2. Differential calculus of one real variable: the real numbers, elementary functions, limits and continuity, derivatives, differentials, the mean-value theorem, applications of the derivative, graphing, polynomial approximation and Taylor´s theorem.
3. The integral: antiderivatives, indefinit integrals and integration rules, technique of integration, the definite integral, the fundamental theorem of calculus, applications of the definite integral.
4. Differential equations: basic notions, separable differential equations, linear first-order differential equations, second-order differential equations, some applications. Last update: Rubešová Jana, RNDr., Ph.D. (30.04.2002)
|