SubjectsSubjects(version: 962)
Course, academic year 2024/2025
   Login via CAS
Mathematics for Chemists I - MS710P04A
Title: Matematika pro chemiky I
Guaranteed by: Institute of Applied Mathematics and Information Technologies (31-710)
Faculty: Faculty of Science
Actual: from 2018
Semester: winter
E-Credits: 8
Examination process: winter s.:
Hours per week, examination: winter s.:4/2, C+Ex [HT]
Capacity: 170
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech
Is provided by: MS710P52
Note: enabled for web enrollment
Guarantor: RNDr. Naděžda Krylová, CSc.
Teacher(s): Ing. Jindřich Dolanský, Ph.D.
RNDr. Hana Hladíková, Ph.D.
RNDr. Naděžda Krylová, CSc.
Mgr. Jana Němcová, Ph.D.
Incompatibility : MS710P00, MS710P01, MS710P02
Is incompatible with: MS710P02, MS710P03A, MS710P03B, MS710P00
Is pre-requisite for: MC260P35, MC260C11, MC260P02
Is interchangeable with: MS710P00, MS710P03A, MS710P02, MS710P03B
Opinion survey results   Examination dates   Schedule   
Annotation -
This course will cover basics of the linaer algebra and the calculus.
Last update: Rubešová Jana, RNDr., Ph.D. (30.04.2002)
Literature - Czech

J. Štěpánek: Matematika pro přírodovědce I, II. Univerzita Karlova, Praha 1990.

N. Krylová, M. Štědrý: Sbírka příkladů z matematiky. PřF UK, Praha 1994.

A. Klíč a kolektiv: Matematika I. VŠCHT, Praha 1998.

D. Turzík a kolektiv: Matematika II. VŠCHT, Praha 1998.

Kolektiv autorů: Sbírka příkladů z matematiky. VŠCHT, Praha 1992.

Vojtěch Jarník: Diferenciální počet I. Academia, Praha 1963.

Vojtěch Jarník: Integrální počet I. Academia, Praha 1963.

Last update: Rubešová Jana, RNDr., Ph.D. (06.01.2003)
Syllabus -

1. Basic notions from linear algebra: vectors, the vector space Rn, linear mappings Rn into Rm, matrices, systems of linear equations, determinants.

2. Differential calculus of one real variable: the real numbers, elementary functions, limits and continuity, derivatives, differentials, the mean-value theorem, applications of the derivative, graphing, polynomial approximation and Taylor´s theorem.

3. The integral: antiderivatives, indefinit integrals and integration rules, technique of integration, the definite integral, the fundamental theorem of calculus, applications of the definite integral.

4. Differential equations: basic notions, separable differential equations, linear first-order differential equations, second-order differential equations, some applications.

Last update: Rubešová Jana, RNDr., Ph.D. (30.04.2002)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html