|
|
|
||
The scope of this course is to provide students with understanding of basic principles of pulse Fourier transform NMR spectroscopy and two-dimensional techniques (2D NMR).
Simple one-dimensional pulse sequences (inversion recovery, APT, spin-echo experiments). Nuclear Overhauser effect. Principles of two-dimensional spectroscopy, polarization transfer, homonuclear correlated spectra (COSY), J-resolved spectra, heteronuclear correlations H,C, inversion techniques. Dynamic processes studied by NMR spectroscopy. Basics of solid-state NMR spectroscopy. Last update: Dračínský Martin, doc. RNDr., Ph.D. (25.02.2021)
|
|
||
M. Dračínský: NMR Spektroskopie pro chemiky, PřF UK, 2021 nmr-challenge.com H. Günther: NMR Spectroscopy, 2nd Edition. Wiley, New York, 1995. Last update: Dračínský Martin, doc. RNDr., Ph.D. (22.06.2022)
|
|
||
Written test + 80% of homework assignments. Last update: Dračínský Martin, doc. RNDr., Ph.D. (19.02.2025)
|
|
||
Basic principles of pulse Fourier transform NMR spectroscopy, magnetization, pulse angle, vector model, free induction decay (FID). Fourier transformation. Pulse sequencies of simple one-dimensional spectra (inversion recovery, spin-echo, attached proton test). Last update: Dračínský Martin, doc. RNDr., Ph.D. (25.02.2021)
|
|
||
Upon completing the course, the student will be able to:
Last update: Dračínský Martin, doc. RNDr., Ph.D. (09.01.2025)
|