SubjectsSubjects(version: 945)
Course, academic year 2023/2024
   Login via CAS
Spectroscopic Methods NMR I - MC270P06B
Title: Spektrální metody NMR I
Czech title: Spektrální metody NMR I
Guaranteed by: Department of Organic Chemistry (31-270)
Faculty: Faculty of Science
Actual: from 2021
Semester: winter
E-Credits: 4
Examination process: winter s.:
Hours per week, examination: winter s.:2/1, Ex [HT]
Capacity: unlimited
Min. number of students: 3
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Additional information:
Note: enabled for web enrollment
Guarantor: doc. RNDr. Martin Dračínský, Ph.D.
Teacher(s): doc. RNDr. Martin Dračínský, Ph.D.
Incompatibility : MC270P77
Is incompatible with: MC270P77
Annotation -
Last update: doc. RNDr. Martin Dračínský, Ph.D. (24.10.2019)
The goal of the course is to introduce basic principles and methods of nuclear magnetic resonance (NMR) spectroscopy. The course is focussed on the application of NMR spectroscopy for solving structures of small organic molecules in solution from proton and carbon spectra.
Literature - Czech
Last update: doc. RNDr. Martin Dračínský, Ph.D. (22.06.2022)

M. Dračínský: NMR Spektroskopie pro chemiky

H. Friebolin: Basic One and Two-Dimensional NMR Spectroscopy, Wiley, Weinheim, 2005.
H. Günther: NMR Spectroscopy, Wiley, Chichester, 1995.
S.Böhm, S. Smrčková-Voltrová: Strukturní analýza organických sloučenin. Ediční a audiovizuální centrum VŠCHT, Praha 1995.
S. Voltrová: Příklady pro cvičení ze strukturní analýzy organických sloučenin . Ediční a audiovizuální centrum VŠCHT, Praha, 1996.

Requirements to the exam - Czech
Last update: doc. RNDr. Martin Dračínský, Ph.D. (03.09.2023)

Zvládnutí teorie podle osnovy uvedené v sylabu k přednášce, praktické provedení interpretace protonových a uhlíkových NMR spekter jednoduchých organických sloučenin.

Syllabus -
Last update: doc. RNDr. Martin Dračínský, Ph.D. (24.10.2019)

1. Basic principles of NMR spectroscopy.
2. Experimental setup – the spectrometer, NMR magnets, Fourier transformation, data processing.
3. Spectral parameters – the number and intensity of signals, chemical shift, shielding, spin-spin interactions.
4. Chemical shift – the influence of electron density, the effect of neighbouring groups, magnetic anisotropy, ring-current effect, intermolecular interactions.
5. Proton chemical shifts – functional groups, exchangeable protons.
6. Carbon chemical shifts – functional groups.
7. The relationship between spectra and structures – equivalence, symmetry, chirality.
8. Spin-spin indirect coupling – geminal coupling, vicinal coupling, Karplus equation, long-range coupling.
9. Decoupling, solvent suppression, APT experiment, DEPT experiment.
10. NMR relaxation – T1 and T2 relaxation.
11. Dynamic processes – chemical exchange, chemical reactions, the influence of temperature.
12. 2D NMR spectroscopy – basic principle, most common experiments (COSY, HSQC, HMBC).

Charles University | Information system of Charles University |