Spectroscopic methods - A - MC260P128A
Title: Spectroscopic methods - A
Guaranteed by: Department of Physical and Macromolecular Chemistry (31-260)
Faculty: Faculty of Science
Actual: from 2023
Semester: summer
E-Credits: 3
Examination process: summer s.:oral
Hours per week, examination: summer s.:1/1, Ex [HT]
Capacity: unlimited
Min. number of students: 3
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: English
Is provided by: MC260P128
Note: enabled for web enrollment
Guarantor: prof. RNDr. Miroslav Štěpánek, Ph.D.
Teacher(s): doc. RNDr. Ivana Šloufová, Ph.D.
prof. RNDr. Miroslav Štěpánek, Ph.D.
RNDr. Zdeněk Tošner, Ph.D.
Class: MALDI-TOF MS Systém
Původní předmět
Opinion survey results   Examination dates   SS schedule   
Annotation
Introduction to spectroscopic methods. The course combines lectures comprising both theoretical principles of the methods and their instrumentation with practical courses.
Last update: Štěpánek Miroslav, prof. RNDr., Ph.D. (08.02.2022)
Literature

Lakowicz, J.R.  Principles of Fluorescence Spectroscopy. Spinger-Verlag 2006

Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons 2004

Smith, E., Dent, G. Modern Raman Spectroscopy: A Practical Approach. John Wiley & Sons 2005

Lambert, J.B., Mazzola, E.P. Nuclear Magnetic Resonance Spectroscopy. Pearson Education, 2004

Last update: Štěpánek Miroslav, prof. RNDr., Ph.D. (08.02.2022)
Requirements to the exam

Oral exam 

Last update: Štěpánek Miroslav, prof. RNDr., Ph.D. (08.02.2022)
Syllabus

1. Vibrational spectroscopy

Introduction to vibrational spectroscopy, infrared spectroscopy (NIR, MIR, FAR), Raman scattering, resonance Raman scattering, selection rules, molecular vibrations, vibrational bands assignments, characteristic vibrations, surface-enhanced Raman scattering (preparation of plasmonic metal nanostructures), applications

2. Electronic spectroscopy

Introduction to electronic spectroscopy, absorption and emission electronic transitions, fluorescence spectroscopy, Jablonski diagram, Franck-Condon principle, radiation and radiationless deactivation of electronic excited states, Förster resonance energy transfer, static and dynamic fluorescence quenching, relaxation of the solvent cage, fluorescence anisotropy. Application of fluorescent probes for studies of colloidal systems and biopolymers.

3. NMR spectroscopy

Principles of magnetic resonance, chemical shift, J-coupling, interpretation of 1D proton and carbon NMR spectra, APT and DEPT experiments, introduction to 2D NMR spectroscopy, COSY, HSQC and HMBC experiments and their interpretation

Last update: Štěpánek Miroslav, prof. RNDr., Ph.D. (08.02.2022)