Physical Chemistry - GB116
Title: Fyzikální chemie
Guaranteed by: Department of Biophysics and Physical Chemistry (16-16110)
Faculty: Faculty of Pharmacy in Hradec Králové
Actual: from 2024
Semester: summer
Points: 0
E-Credits: 6
Examination process: summer s.:written
Hours per week, examination: summer s.:9/14, C+Ex [HS]
Capacity: unlimited / unlimited (unknown)
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
Key competences:  
State of the course: taught
Language: Czech
Teaching methods: combined
Level:  
Explanation: (ZB, komb.1.r.)
Note: deregister from the exam date if a requisite was not fulfilled
course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Mgr. Jana Pavlíková Přecechtělová, Ph.D.
Classification: Pharmacy >
Co-requisite : GB106
Examination dates   SS schedule   
Annotation -
Physical chemistry is an interdisciplinary subject that uses the knowledge of physics, chemistry, electrochemistry and quantum mechanics to describe the properties of compounds at the molecular level. This subject follows the subject of Biophysics. It provides students with the necessary theoretical background in the field and knowledge of the principles of physico-chemical measurement methodologies. It is a preparatory course, which aims to prepare students for related disciplines of a general scientific basis and purely pharmaceutical disciplines. Topics: Interaction of electromagnetic radiation with matter, Spectroscopy - principles, Ion equilibria, Phase interface phenomena, Electrochemistry and electrochemical methods, Colloids and polymers, Reaction kinetics, Nonequilibrium systems, Biological membranes and transport of substances across membranes, Principles of sensory perception.
Last update: Pavlíková Přecechtělová Jana, Mgr., Ph.D. (15.02.2025)
Course completion requirements - Czech

Úspěšné absolvování zápočtového testu. Zápočtový test skládá ze dvou výpočtových příkladů (každý po 25-ti bodech). Pro úspěšné absolvování testu je potřeba získat minimálně 20 bodů.

 

Last update: Pavlíková Přecechtělová Jana, Mgr., Ph.D. (15.02.2025)
Literature - Czech

Povinná:

  • Kubíček, Vladimír. Výpočty z fyzikální chemie I. Praha: Karolinum, 2010, 71 s. ISBN 978-80-246-1806-7.

Doporučená:

  • Atkins, P. W. De Paula, Julio. Fyzikální chemie. Praha: Vysoká škola chemicko-technologická v Praze, 2013, 915 s. ISBN 978-80-7080-830-6.
  • Sinko, Patrick J.. Martin's physical pharmacy and pharmaceutical sciences : physical chemical and biopharmaceutical principles in the pharmaceutical sciences. Philadelphia: Wolters Kluwer, 2023, 714 s. ISBN 978-1-975174-85-9.
  • Vacík, Jiří. Obecná chemie. Praha: Přírodovědecká fakulta Univerzity Karlovy, 2017, 283 s. ISBN 978-80-7444-050-2.

Last update: Pavlíková Přecechtělová Jana, Mgr., Ph.D. (15.02.2025)
Syllabus -

Interaction of electromagnetic radiation with matter


1. Electromagnetic radiation: electromagnetic wave, electromagnetic spectrum, properties of electromagnetic waves.
2. Speed of propagation of electromagnetic radiation, light beam.
3. The Huygens principle.
4. Reflection of light.
5. Refraction of light, Abbe's refractometer.
6. Bending of light, dispersion of light.
7. X-ray diffraction, Bragg's law, X-ray crystallography.
8. Geometrical (ray) optics; mirrors, lenses.
9. Young's experiment.
10. Polarized light, circular polarimeter.
11. Quantum optics, photon energy.
12. Photoelectric effect.

Spectroscopy - principles


1. Spectroscopy. Spectrum.
2. Lambert-Beer's law, absorbance, transmittance.
3. Atomic spectroscopy: interpretation using Bohr's model of the atom, absorption spectra, emission spectra.
4. Introduction to molecular spectroscopy: electron, vibrational and rotational energy levels. Areas of the electromagnetic spectrum and spectroscopic techniques that use them.
5. UV-VIS spectroscopy: molecular orbitals, diagram of molecular orbitals in a hydrogen molecule, electron transitions, effects of substituents, conjugation and solvents, complementary colors.
6. Introduction to vibrational spectroscopy: potential and energy levels of harmonic and anharmonic oscillators.
7. Infrared spectroscopy (IR): selection rule for infrared transitions, normal modes of polyatomic molecules, characteristic vibration region and thumbprint region in infrared spectrum.
8. Raman spectroscopy: selection rule for Raman transitions, Stokes and anti-Stokes shift, selection rule for Raman transitions.
9. Luminescence spectroscopy: fluorescence, phosphorescence, Jablonski diagram, multiplicity of state.
10. NMR spectroscopy in the context of other spectroscopic methods - how is NMR different?

Ionic equilibria


1. Characteristics of electrolytes, degree of dissociation, Arrhenius theory. Arrhenius relation for the degree of dissociation.
2. Activity, activity coefficient, ionic strength of solutions, Debye-Hückel theory. Relations for calculating activity coefficients.
3. Dissociation of weak acids and bases, calculation of their pH, Ostwald's dilution law.
4. Hydrolysis of salts, hydrolytic constant, calculation of pH of salts.
5. Buffers, mechanism of action, Henderson - Hasselbalch equations.
6. Autoprotolysis of water, pH, acid-base theory (Arrhenius, Bronsted-Lowry, Lewis).
7. Amphoteric electrolytes, isoelectric point.
8. Acid-base indicators.
9. Solubility product, solubility of precipitates.

Phase interface phenomena


1. Solid and liquid phase interfaces.
2. Surface tension.
3. Adsorption in liquid interphase, surfactants, hydrophilic-lipophilic system.
4. Particle phase interface phenomena, influence of electrolytes, principles of chromatographic methods.
5. Positive and negative adsorption on liquid surfaces.
6. Interfacial tension.
7. Tension applied at the point of contact of the three phases.
8. Contact angle.
9. Expansion coefficient.

Electrochemistry, electrochemical methods


1. Conductivity of electrolytes, its concentration dependence, Kohlrausch's law of independent ion travel. Mobility of ions in an electric field.
2. Measurement of conductivity, use of conductivity measurements.
3. Formation of electrode potential. Nernst equation. Tabulation of electrode potentials.
4. Potentiometry and its applications.
5. Types of electrodes, Donnan potential.  
6. Galvanic cells and EMN measurements. Relationship between EMN° and Gibbs energy.
7. Electrolysis, Faraday's laws.
8. Flux of substances, diffusion (Fick's law).
9. Other transport processes in solutions, Nernst-Planck equation.

Colloidics, polymers


1. Types of dispersions and characterization of colloidal systems.
2. Lyophilic, lyophobic and associative colloids.
3. Optical, kinetic, and electrical properties of colloids.
4. Suspensions, interfacial properties, suspension formation, sedimentation.
5. Emulsions, types of emulsions, theory of their formation and stability.
8. Micelles, critical micellar concentration.
9. Sedimentation of particles.
10. Monomeric composition of polymers.
11. Structure of polymers and copolymers.
12. Crystalline and amorphous regions of polymers.
13. Physical properties of polymers.
14. Glass transition of polymers.
15. Solubility of polymers.

Non-equilibrium systems


1. Non-equilibrium, stationary and equilibrium systems.
2. Flow of a quantity, flux of a quantity, gradient of a quantity.
3. Transport processes.
4. Cross effects in systems where there is more than one gradient.
5. Diffusion in a liquid medium.
6. 1. Fick's law.
7. Stokes-Einstein equation.
8. 2. Fick's law.
9. Diffusion in non-liquid media.
10. Dissolution of a solid.
11. Thermodynamically unstable systems.

Biological membranes and the transport of substances across membranes


1. Membranes - structure, function.
2. Lipid bilayer.
3. Lipids in biological membranes.
4. Liposomes.
5. Lipid peroxidation.
6. Proteins in biological membranes.
7. Active and passive transport of substances across the membrane.
8. Simple diffusion across the membrane, diffusion of charged particles.
9. Partition coefficient.
10. Osmosis.
11. Donnan equilibrium.
12. Active and vesicular transport.
13. Secondary active transport.
14. Compartment system.

 

Principles of sensory perception


1. Sense perception, the general structure of the receptive system, senses.
2. Weber-Fechner law and Stevens law.
3. Sight. Ocular light refractive apparatus, accommodation, visual acuity.
4. Trichromatic theory of vision.
5. Molecular mechanism of vision, photochemical reaction.
6. Eye defects.
7. Sound, hearing, and theories of hearing.
8. Acoustic impedance.
9. Structure of the outer, middle, and inner ear.
10. Corti's organ.
11. Hearing defects.

 

Laboratory training

  1. Determination of the partition coefficient of a substance between two immiscible liquids.
  2. Potentiometric determination of the dissociation constant of a weak acid.
  3. Conductimetric determination of the dissociation constant of a weak acid or a weak base.
  4. Spectrophotometry: determination of the molar absorption coefficient.
  5. Optical measurement methods: refractometry and polarimetry.
Last update: Pavlíková Přecechtělová Jana, Mgr., Ph.D. (15.02.2025)
Learning resources - Czech