
Problems

December 11, 2024

Problems marked with $ may be somewhat challenging—thus their solutions (or
original solutions) may (perhaps) earn some extra credit(s). Problems marked
with * deserve special attention; their solutions are substantially complementing
the main exposition of the methodology. Even if a student does not solve such
a problem independently, it is recommended that they familiarize at least with
the facts these problems convey, if not with their solutions. Especially in case
when the problem is marked also by $, its solution is usually not required for the
understanding of the main exposition—but its statement ususally is.

Problems designated as “R problems” are (typically) not solved in the traditional
mathematical way, but via reading the documentation, experimenting with the
software, etc., until arriving to a guess for the solution. This guess should be
then validated in some way in the software—mere speculations do not constitute
a valid solution. Once the problem is solved, make some record of your session:
if it does not pose difficulties for you, print a transcript of it (transcript is always
required if you are submitting solutions over email in lieu of a normal parrticipation
in class), otherwise at least write down some results (although the demonstration
in class may not necessarily reproduce all of that).

Problems set in blue have been already sufficiently discussed in class, and their
solution no longer earns a credit.

1*. Matrices generating quadratic forms can be considered symmetric without
loss of generality. Give a formal justification of this claim.

2*. Suppose that (not necessarily square) matrices A and B are such that both
AB and BA are square matrices. Show that matrices AB and BA have the same
nonzero eigenvalues.

3*. Let A = QΛQT, where Q is an orthogonal and Λ a diagonal matrix. Show
that the diagonal of Λ consists of eigenvalues and the columns of Q are the
corresponding eigenvectors.

4*. Let A = ULVT be a singular decomposition of matrix A. Figure out from that
the eigenvalue decomposition of ATA.
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5. Give the form of a linear transformation in R2 that is the rotation counter-
clockwise by an angle ϕ. Is that an orthogonal transformation? (Orthogonal
transformation = linear transformation whose matrix is orthogonal). In the ap-
plications, software, etc., orthogonal transformations are often mentioned as
“rotations”. Comment on this terminology, for simplicity considering only trans-
formations in R2.

6*. Let A be a symmetric p × p nonnegative definite matrix. Find a p ×m
matrix L such that LLT has the minimal Euclidean distance from A.

7*$. Give a proof of the theorem of Eckart and Young, as formulated in the
notes. (The crux of this problem is in showing that the desired approximation
of a diagonal matrix is diagonal itself: once this is established, the rest of the
proof is straightforward, as indicated in the notes.)

8*. Suppose that A is a symmetric and nonnegative definite matrix, A = QΛQT

where Q is an orthogonal and Λ a diagonal matrix. Find x for which xTAx is
maximal, under the condition that ‖x‖ = 1. Is such an x unique?

9*. Suppose that A is symmetric and nonnegative definite and B is symmetric
and positive definite. The maximum of

xTAx

xTBx

for x 6= 0 is the largest eigenvalue of B−1A and is attained for the corresponding
eigenvector x.

10*. Suppose that A is symmetric and nonnegative definite and B and C are
symmetric and positive definite. The maximum of

(xTAy)2

(xTBx)(yTCy)

for x 6= 0 and y 6= 0 is the largest eigenvalue of both B−1AC−1AT and C−1AB−1AT,
and is attained for the corresponding eigenvectors x and y, respectively.

11*. Prove that
∂aTx

∂x
= a,

∂xTAx

∂x
= (A+ AT)x,

∂aTXa

∂X
= aaT.

12*$. Prove that
∂ log det(X)

∂X
= (X−1)T.

13*. For the stochastic version of the variance-covariance matrix, we have the
transformation formula, for any nonrandom A

Var(Ay) = AVar(y)AT.
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Construct the transformation theory, including formulation and proof of the ana-
log of the above formula, for the sample variance-covariance matrices, working
with the (non-random) data matrix Y instead of the random vector y, and con-
sidering the same (non-random) A.

14. Describe what conclusion for the data can you derive from the fact that their
sample variance-covariance matrix is singular.

15*. Show that the (sample) variance-covariance matrix computed from the
scaled data is the (sample) correlation matrix.

16. Let (X,Y) be a random vector. Assuming that all required moments exist,
find (non-random) a and b such that E(Y −a− bX)2 is minimal.

17*. Consider the extension of the previous problem: let f and z be random
vectors with respectively m and p components, such that both E(f) = 0 and
E(z) = 0. Show that an m × p matrix U minimizing E‖f − Uz‖2 has the form
U = Cov(f, z)[Var(z)]−1. (It is assumed that all moments exist.)

18. (An R problem) Functions prcomp() and princomp() both compute principal
components; if they compute them directly from the data matrix (not from
the variance-covariance or correlation matrix), they give slightly different results.
Figure out why—and indicate how they can be reconciled.

19. (Another R problem) Wanting to demonstrate how predict.prcomp() method
for prcomp(), I executed the following code (results are abbreviated)

> trackmen.pcs <- prcomp(trackmen,scale=T)

> t(as.matrix(trackmen) %*% trackmen.pcs$rot)[1,]

...

usa ussr wsamoa

86.07319 87.32818 104.55099

This is what I believed should be the result of the predict.prcomp() method for
prcomp(). Thus I executed

> predict(trackmen.pcs)[,1]

...

switzerl taipei thailand turkey usa ussr wsamoa

-1.6389715 0.9505025 2.7618174 0.2660800 -3.4305560 -2.6268513 7.2312164

Apparently, the result is different... What am I doing wrong?
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20*. Let the singular decomposition of the centered data matrix Y is Y = ULVT.
Show how this decomposition can be used for computing the principal compo-
nents.

21*. Prove that principal components are uncorrelated (their sample correlation
is zero).

22*. Show that if the data matrix Y can be viewed as a matrix whose rows
are independent random vectors that have all distribution with mean µ and the
variance-covariance matrix Σ, then the sample variance-covariance matrix SY (as
defined in the lectures), is an unbiased estimator of Σ: that is, E(SY) = Σ.

23. Given that all results of factor analysis are equivalent under a rotation by an
orthogonal matrix A: is the order of the resulting factors essential?

24*. Verify that all stochastic assumptions of the predictive factor model (trans-
parency entitled “Factor model: predictive form”) of factor analysis are preserved
by a rotation by any orthogonal matrix A.

25*. Assuming that all stochastic assumptions of the predictive factor model
(orthogonal factor model) are satisfied, calculate Cov(y, f).

26*. Suppose that Σ is a symmetric nonnegative definite matrix, and LLT is its
low rank (rank m) approximation (as in the transparency entitled: “Low-rank
approximation”). Let Ψ = Σ− LLT. Show that Ψ is nonnegative definite - and in
particular, that its diagonal elements are nonnegative.

27. Let x1,x2, . . . ,xm, y1,y2, . . . ,yn are two samples arising as results of inde-
pendent random variables, all of them with the normal distribution with the same
variance; the mean of the xi’s is µx, the mean of the yi’s is µy. You can test
the equality µx = µy either (i) by the two sample t-test (function t.test() in R)
or (ii) by the F-test of the equality of all means in the one-way ANOVA layout.
Compare both approaches and summarize the result.

28*. Suppose that random vector Y = (Y1,Y2, . . . ,Yn)T has (multivariate) nor-
mal distribution N(µ,Σ), normal distribution with mean µ = (µ1,µ2, . . . ,µn)T

and variance-covariance matrix Σ. Show that Σ−1/2(Y − µ) has (multivariate)
normal distribution N(0, I), the normal distribution with mean zero and variance-
covariance matrix equal to the identity matrix I.

29*. Show that with normal distribution, orthogonal transformation preserves iid
property: if X1,X2, . . . ,Xn are independent random variables, each with the same
normal distribution with mean 0, then so are the components of the random
vector AX, where XT = (X1,X2, . . . ,Xn), for any orthogonal matrix A.
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30. Suppose that we have two random vectors, X = (X1,X2)
T and Y = (Y1,Y2)

T.
These vectors are independent – that means, each component of X is independent
of each component of Y – and each of them has multivariate normal distribution:

X with mean

(
1
0

)
and variance-covariance matrix

(
2 1
1 2

)
,

Y with mean

(
0
1

)
and variance-covariance matrix

(
4 2
2 4

)
.

What is the distribution of Z1 = X1 −X2 +X3 −X4? What is the distribution of
Z2 = X1 +X2 −X3 −X4? Are they the same? Are Z1 and Z2 independent?

31*. Suppose that Y is a random matrix with lines yT
i , where yi are iid random vec-

tors, vectors that are independent between themselves (but not necessarily their
components are independent) and have the same normal distribution N(µ,Σ).
Derive the putative form of maximum likelihood estimates of µ and Σ, via the
solutions of the corresponding likelihood equations.

32$. Show that given a p× p symmetric positive definite matrix B and a b > 0,
we have for every positive definite p× p matrix Σ,

1

(det(Σ))b
e− tr(Σ−1B)/2 6

1

(det(B))b
(2b)pbe−pb,

with equality holding only for Σ =
1

2b
B.

(This can be used to prove that the maximum likelihood estimators, as derived
in the previous problem, are really maximizing the likelihood.)

33*. Suppose that Y is a random matrix with lines yT
i , where yi are iid random

vectors. Show that if A and B are (non-random) matrices such that ABT = O,
then the elements of AY and BY are uncorrelated. Use that to show that if the
(same) distribution of all yi is normal, then ȳ, the random vector of columnwise
sample means of Y, and SY, the (random) sample variance-covariance matrix
calculated out of Y, are independent.

34. (An R problem) Lecture notes say (transparency entitled “Remarks”, preced-
ing the transparency entitled “Stochastic underpinning?”) that canonical variates
are usually scaled so that the variance of them is one. Is it true for the R function
cancor()? How is it done there? You are not to provide a proof by examining
the source code, but verify your answer on some dataset.
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35*. (A genuinely R problem) When I checked the connection of correspondence
analysis to canonical correlations, my R calculations went smoothly:

> haireye=apply(HairEyeColor,1:2,sum)

> library(MASS)

> corresp(haireye,nf=3)

First canonical correlation(s): 0.45691646 0.14908593 0.05097489

...

> hair=as.data.frame(as.table(haireye))

> hairdat=hair[rep(row.names(hair),hair$Freq),1:2]

> X=model.matrix(~Hair-1,data=hairdat)

> Y=model.matrix(~Eye-1,data=hairdat)

> cancor(X,Y)

$cor

[1] 0.45691646 0.14908593 0.05097489

...

However, from the mathematical point of view this should not be possible! Note
first that the 0-1 matrices X and Y sum rowwise to the vectors of 1’s; thus,
taking a = b = (1, 1, 1, 1)T, and consider the correlation of Xa and Yb, gets me
screwed

> as.vector(apply(X,1,sum))

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

...

> as.vector(apply(Y,1,sum))

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

...

> cor(apply(X,1,sum),apply(Y,1,sum))

[1] NA

Warning message:

In cor(apply(X, 1, sum), apply(Y, 1, sum)) : the standard deviation is zero

If I want to calculate the canonical correlations via the method on ... it bombs1

> solve(var(X))

Error in solve.default(var(X)) :

system is computationally singular: reciprocal condition number =

1.38702e-17

> solve(var(Y))

Error in solve.default(var(Y)) :

system is computationally singular: reciprocal condition number = 7.41607e-18

1some versions of R behave differently, however
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36*. Prove the three properties stated on the transparency with the title “Wishart
distribution: first properties”.

37*. Prove the property on the transparency with the title “Wishart distribution:
the important property”.

38*. (Statistical/R problem) Consider two-way layout saturated model in the
(univariate) ANOVA, a linear model with two factors, each with two levels: the
mean µij, of every observation whose first factor is set at i and second factor is
set at j, is modeled as

µij = ν+αi +βj +γij, i = 1, 2, j = 1, 2.

where ν is customarily referred to as intercept, αi and βj is called the effect
of the first and second factor, respectively, and γij models their interaction. If
γij = 0 for all i and j, the model is called additive; to test additivity, one can
test the hypothesis

H0 : γ11 = γ12 = γ21 = γ22 = 0.

Under certain conditions, this is equivalent to testing

H ′0 : µ11 −µ12 −µ21 +µ22 = 0.

These “certain conditions” are those typically adopted to ensure that the sat-
urated model is identified (that is, uniquely determined when there are enough
data). Give one set of such conditions, and show, in particular, what of them is
needed to ensure the above equivalence. Are your conditions used by R?

39. Let y1, y2, . . . , yn be a random sample from N(µ,Σ), with the sample
mean ȳ and the sample variance-covariance matrix S. Consider one-dimensional
projections of this random sample: for given a, the one-dimensional random
sample is aTx1, aTx2, . . . , aTxn. Hotelling’s one-sample statistic T 2

a for such a
projected sample is nothing else than the square of one-sample t-statistic, where
the appropriate mean, sample mean and sample standard deviation depend on a

and respectively on µ, x̄ and S. Show that the Hotelling’s one-sample statistic
T 2 for the original (unprojected, p-dimensional sample) is equal to the maximum
of all projected statistics T 2

a , over all a 6= 0; that is, show that T 2 = maxa 6=0 T
2
a .

40$. Is the Canberra metric (as given in the transparencies) or some of its mod-
ifications really a metric? (Prove or disprove.)

41. Verify all claims stated on the transparency entitled “Recovering inner prod-
ucts” (currently page 250 of the 2nd set).
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42. Let C is a similarity matrix with elements cij, and let D be a dissimilarity
matrix with elements dij = (cii − 2cij + cjj)1/2. Show that if C is nonnegative
definite, then D is Euclidean, that is, induced by some inner product.

43*. Refer to the transparency entitled “Dendrogram” and prove the claim stated
there: show that the tree distance between objects and/or clusters read out of a
dendrogram - in a way described in the text of the transparency - is an ultrametric.

44*. Suppose that the original dissimilarity used in clustering is an ultrametric,
and an agglomerative method with single linkage is used. Prove or disprove:
the tree distance in the resulting dendrogram is an extension of the original
dissimilarity.

45$(c). Suppose that the clusters in R2 arise as a mixture of distribution: as two
samples of size n (the same size is assumed just for simplicity) from two bivariate
normal distributions with expected values µ1 6= µ2 - for simplicity, assume that
their variance-covariance matrix is the same, Σ, and that ‖µ1 − µ2‖ = 10. If
n grows to ∞, what is the limit of the distance of two clusters that arise this
way (a) in the single linkage (b) complete linkage (c) average linkage? Give just
intuitive justification of your claims, no formal probabilistic reasoning is required
here.

46. For a collection of n data points in R2, consider the coordinatewise mean and
the coordinatewise median. Show that the mean is equivariant (that is, trans-
forms accordingly: mean of transformed data is their original mean transformed
by the same transformation) with respect to any orthogonal transformation (ro-
tation, say). Show that the coordinatewise median does not have this property.

47. Consider a task of classification with two classes, based on X: we assume
that the distribution of X is either P1 or P2, with densities respectively f1(x), and
f2(x). There are, however, three possible decision outcomes: outcomes 1 and 2
correspond into classifying an item into class 1 or 2, respectively, the outcome
3 means “undecided”. In the decision-theoretic setting, all this is expressed by
a loss function that posits L(1,P1) = L(2,P2) = 0, L(2,P1) = L(1,P2) = 1, and
L(3,P1) = L(3,P2) = q, with 0 < q < 1. Given the general prior probabilities π1

and π2, derive the optimal Bayes classification rule in this case.

48. Suppose that a supervised classification method classifying into two classes,
1 and 2, enables you to predict (that is, to estimate/determine somehow) the
posterior probabilities for some given prior probabilities π1 and π2 = 1 − π1. (In
view of the fact that π2 = 1 −π1, one can consider the posterior probabilities to
be parametrized by π1 alone – and without loss of generality assume π1 = 1/2.)
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Given the formulas for the posterior probabilities for given πg and true fg, one
can naturally posit that analogous formulas should be satisfied by the estimates
of the posterior probabilities and the estimates f̂g of fg. So, let us assume that
we can obtain q̂1(x, 1/2) and q̂2(x, 1/2) for any x; can we recover from these the
predictions q̂1(x,π1) and q̂2(x,π1) for any given π1? We cannot recover in general
recover the density estimates f̂1(x) and f̂0(x), but perhaps posterior probabilities
may be possible – show how, and then indicate how this could be applied for
incorporating prior probabilities into the method of k nearest neighbors.

49. Consider a general classification rule for two classes as in the transparency
entitled “The special case of two classes continued”: the rule that based on x

classifies to class 1 if rule(x) > C and otherwise classifies to class 2. Suppose
now threshold ∈ [0, 1], and rule(x) = Y, where Y is a random number uniformly
distributed in the interval [0, 1]. How does the ROC curve look like for this
classification rule?

50. Give a detailed derivation of the scores given on the transparency entitled
“Classification scores, LDA and QDA”.

51. Using the theory developed in the lectures about MANOVA, show that the
rank of the matrix B defined on the transparency entitled “LDA another way:
Fisher’s linear discriminants” is K− 1.

52. Prove the equivalence to LDA when classification is done using all linear
discriminants, as stated on the transparency “And the classification rule based
on them”.

53. Prove the equivalence of the least squares regression to the LDA, as stated
in the second paragraph of the transparency entitled “Regression interpretation”.

54. Verify the claim stated in the transparency entitled “The connection to the
LDA”: show that in the LDA situation, when f1 and f2 are multivariate normal
with the same variance-covariance matrix, the posterior probabilities have the
form shown in the transparency.

55*. Prove the property stated in the first paragraph of the transparency entitled
“Duality to principal components” (currently page 250 of the 2nd set).

56. Show that the solution for ridge regression estimation prescription, the
vector β minimizing

(y− Xβ)T(y− Xβ) + λβTβ

is β = (XTX+ λI)−1XTy, regardless of the rank of X.
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