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Classification: generalities
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Classification

Classification: we assign items (samples) into groups (labels),
on the basis of observed values of various variables - classifiers
(features)

Supervised classification: we know the groups where the items
have to be assigned in advance, typically given a working (training)
dataset on which we are able to observe those; the emphasis is
then on obtaining a good rule (learning) for classification of future
items: it is a sort of predictive method (aka “learning”): the rule
predicts the group from the values of classifiers

Unsupervised classification: we do not know the groups in
advance. Can be viewed as similar to the supervised classification
setting in which the labels of group membership have been lost.
The emphasis is, however, not on classifying future items, but
rather on items in the working datasets
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Classification: supervised

The first task that initiated the development of so-called statistical
(machine) learning was classification - more precisely, what is called
supervised classification

The adjective “supervised” means that we know not only the
number of groups that we would have to classify into (like it is
also somewhat true for partitioning methods in clustering), but for
all the items in the working (training) dataset we also know the
category where each item belongs to (its “label”). That usually
implies that groups are reasonably well defined.

Classifying into one group would be trivial; two groups are
thus a minimum. (There are quite a few methods that work
predominantly only for two groups - but most of the methods
can be applied also to any finite number of groups; the number of
groups is typically not that large. A category “undecided” can be
made an extra group, if so desired.)
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Prediction and the analogy with regression

The task of supervised classification is quite analogous to that of a
regression relationship - the difference is that the response variable
is categorical (“which group” - label) rather than numerical. The
predicting variables (covariates, predictors, features) have pretty
much the same character as in regression; may be numeric or
categorical or both.

Predicting the group of the the items in the working (training)
dataset is of low importance in supervised classification - we already
know the group they belong to. What is important is to obtain a
rule that will classify future data items in similar situations (that
is, the same or similar structure of predictors)

Once a rule is there, we can check how well it would predict the
training data (confronting predictions to reality) - but as a rule,
such checks are not very useful. What says much more about the
quality of a rule is its evaluation on some the data that did not
help creating it: on validation dataset(s).
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Classification: unsupervised

In supervised classification, we know what the groups are, and know
for all the items in the working (training) dataset which group they
belong to

If we do not know what the groups are, then we speak about
unsupervised classification. For those understanding supervised
classification, the unsupervised one is often explained as “a
supervised classification when the labels were lost”; all the
predictors are still there, only the response is missing. (This
explanation may be quite illuminating, but it should be remembered
that it does not go all the way.)

(A situation in which we may know the groups to some extent, and
only for some items of the working (training) dataset is called semi-
supervised classification, and is beyond the scope of this course.)
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Ouverture:
cluster analysis as unsupervised classification
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Clustering as unsupervised classification

Clustering, cluster analysis, is a (pretty much exhausting) instance
of unsupervised classification. As a rule, we do not know what the
groups are, often even not their number - but we still would like
to determine them somehow

The following toy examples were created from supervised
classification datasets by omitting the labels
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Example dataset: about bank clients
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> pairs(Bank[,1:4])
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Seeing the data: principal components
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> biplot(prcomp(Bank[,1:4],scale=T))

> plot(prcomp(Bank[,1:4],scale=T))
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Seeing the data: Sammon mapping
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> library(MASS)

> bsam = sammon(dist(Bank[,1:4]))

...

> plot(bsam[[1]],pch=16)
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Trying 2-means
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These two components explain 83.11 % of the point variability.

> library(cluster)

> clusplot(Bank[,1:4],kmeans(Bank[,1:4],2)$clust)
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Trying 3-medoids
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These two components explain 83.11 % of the point variability.

> library(cluster)

> clusplot(Bank[,1:4],pam(Bank[,1:4],3)$clust)

> clusplot(pam(Bank[,1:4],3))
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Hierarchical: agglomerative, single linkage
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> plot(agnes(Bank[,1:4], method = "single"),which=2)
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Hierarchical: agglomerative, complete linkage
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> pltree(agnes(Bank[,1:4], method = "complete"))
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Hierarchical: agglomerative, average linkage
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Dendrogram of  agnes(x = Bank[, 1:4], method = "average")

Agglomerative Coefficient =  0.9
Bank[, 1:4]
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> pltree(agnes(dist(Bank[,1:4]), method = "average"))
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Hierarchical: divisive
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Divisive Coefficient =  0.93
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> pltree(diana(Bank[,1:4]))
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Silhouette for 2 clusters: agglomerative
> plot(silhouette(cutree(agnes(Bank[,1:4],method="average"),k=2),

+ dist=daisy(Bank[,1:4])))

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of (x = cutree(agnes(Bank[, 1:4], method = "average"), k = 2), 
Silhouette plot of     dist = daisy(Bank[, 1:4]))

Average silhouette width :  0.65

n = 46 2  clusters  Cj
j :  nj | avei∈Cj  si

1 :   42  |  0.64

2 :   4  |  0.79
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Silhouette for 2 clusters: divisive
> plot(silhouette(cutree(diana(Bank[,1:4]),k=2),

+ dist=daisy(Bank[,1:4])),nmax.lab=50,cex=.5)
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Average silhouette width :  0.63

n = 46 2  clusters  Cj
j :  nj | avei∈Cj  si

1 :   41  |  0.63

2 :   5  |  0.62
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Silhouette for 3 clusters: divisive
> plot(silhouette(cutree(diana(Bank[,1:4]),k=3),

+ dist=daisy(Bank[,1:4])),nmax.lab=50,cex=.5)
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Silhouette plot of     1:4]))

Average silhouette width :  0.49

n = 46 3  clusters  Cj
j :  nj | avei∈Cj  si

1 :   20  |  0.45

2 :   21  |  0.53

3 :   5  |  0.50
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Silhouette for 3 clusters: agglomerative
> plot(silhouette(cutree(agnes(Bank[,1:4]),k=2),

+ dist=daisy(Bank[,1:4])),nmax.lab=50,cex=.5)
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Average silhouette width :  0.5

n = 46 3  clusters  Cj
j :  nj | avei∈Cj  si

1 :   20  |  0.47

2 :   22  |  0.49

3 :   4  |  0.73
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Silhouette for 3-medoids
> plot(silhouette(pam(Bank[,1:4],3)),nmax.lab=50,cex=0.5)
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Silhouette for 2-medoids
> plot(silhouette(pam(Bank[,1:4],2)),nmax.lab=50,cex=0.5)
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1 :   21  |  0.58

2 :   25  |  0.28

(standardization changes it a bit, but does not really help)
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And now: bank data revealed

> library(MASS)

> bsam = sammon(dist(Bank0))

> plot(bsam[[1]],pch=16)
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Now we know who bankrupted and who not

> plot(bsam[[1]],pch=15*Bank[,5]+1)
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The dataset
v1 v2 v3 v4 k v1 v2 v3 v4 k

1 -0.45 -0.41 1.09 0.45 0 24 0.38 0.11 3.27 0.35 1

2 -0.56 -0.31 1.51 0.16 0 25 0.19 0.05 2.25 0.33 1

3 0.06 0.02 1.01 0.40 0 26 0.32 0.07 4.24 0.63 1

4 -0.07 -0.09 1.45 0.26 0 27 0.31 0.05 4.45 0.69 1

5 -0.10 -0.09 1.56 0.67 0 28 0.12 0.05 2.52 0.69 1

6 -0.14 -0.07 0.71 0.28 0 29 -0.02 0.02 2.05 0.35 1

7 0.04 0.01 1.50 0.71 0 30 0.22 0.08 2.35 0.40 1

8 -0.07 -0.06 1.37 0.40 0 31 0.17 0.07 1.80 0.52 1

9 0.07 -0.01 1.37 0.34 0 32 0.15 0.05 2.17 0.55 1

10 -0.14 -0.14 1.42 0.43 0 33 -0.10 -0.01 2.50 0.58 1

11 -0.23 -0.30 0.33 0.18 0 34 0.14 -0.03 0.46 0.26 1

12 0.07 0.02 1.31 0.25 0 35 0.14 0.07 2.61 0.52 1

13 0.01 0.00 2.15 0.70 0 36 0.15 0.06 2.23 0.56 1

14 -0.28 -0.23 1.19 0.66 0 37 0.16 0.05 2.31 0.20 1

15 0.15 0.05 1.88 0.27 0 38 0.29 0.06 1.84 0.38 1

16 0.37 0.11 1.99 0.38 0 39 0.54 0.11 2.33 0.48 1

17 -0.08 -0.08 1.51 0.42 0 40 -0.33 -0.09 3.01 0.47 1

18 0.05 0.03 1.68 0.95 0 41 0.48 0.09 1.24 0.18 1

19 0.01 0.00 1.26 0.60 0 42 0.56 0.11 4.29 0.44 1

20 0.12 0.11 1.14 0.17 0 43 0.20 0.08 1.99 0.30 1

21 -0.28 -0.27 1.27 0.51 0 44 0.47 0.14 2.92 0.45 1

22 0.51 0.10 2.49 0.54 1 45 0.17 0.04 2.45 0.14 1

23 0.08 0.02 2.01 0.53 1 46 0.58 0.04 5.06 0.13 1
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A famous dataset: Edgar Anderson’s Iris Data

> ?iris

This famous (Fisher’s or Anderson’s) Iris data set gives the
measurements in centimeters of the variables sepal length and
width and petal length and width, respectively, for 50 flowers from
each of 3 species of Iris. The species are Iris setosa, versicolor,
and virginica.

Again, it is a supervised classification dataset: we know the
categories (labels). However, we play the game again: we pretend
that we do not know them, and see where clustering methods will
take us
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Iris: 2-means
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These two components explain 95.81 % of the point variability.
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> clusplot(iris[,1:4],kmeans(iris[,1:4],2)$cluster,

+ diss=F,labels=2,col.p=c("red","blue","brown")[iris[,5]])

> pairs(iris[,1:4],pch=kmeans(iris[,1:4],2)$cluster,

+ col=c("red","blue","green")[iris[,5]],cex=1.5)
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Iris: 2-medoids
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These two components explain 95.81 % of the point variability.
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> clusplot(iris[,1:4],pam(iris[,1:4],2,diss=F)$cluster,

+ labels=2,col.p=c("red","blue","green")[iris[,5]])

> pairs(iris[,1:4],pch=pam(iris[,1:4],2,diss=F)$cluster,

+ col=c("red","blue","green")[iris[,5]],cex=1.5)
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Iris: 3-means
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These two components explain 95.81 % of the point variability.
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> clusplot(iris[,1:4],kmeans(iris[,1:4],3)$cluster,diss=F,

+ labels=2,col.p=c("red","blue","green")[iris[,5]])

> pairs(iris[,1:4],pch=kmeans(iris[,1:4],3)$cluster,

+ col=c("red","blue","green")[iris[,5]],cex=1.5)
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Iris: 3-medoids
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These two components explain 95.81 % of the point variability.
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> clusplot(iris[,1:4],pam(iris[,1:4],3,diss=F)$cluster,

+ labels=2,col.p=c("red","blue","green")[iris[,5]])

> pairs(iris[,1:4],pch=pam(iris[,1:4],3,diss=F)$cluster,

+ col=c("red","blue","green")[iris[,5]],cex=1.5)
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Iris: 4-means
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These two components explain 95.81 % of the point variability.
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> clusplot(iris[,1:4],kmeans(iris[,1:4],4)$cluster,diss=F,

+ labels=2,col.p=c("red","blue","green")[iris[,5]])

> pairs(iris[,1:4],pch=kmeans(iris[,1:4],4)$cluster,

+ col=c("red","blue","green")[iris[,5]],cex=1.5)
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Iris: 4-medoids
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These two components explain 95.81 % of the point variability.
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> clusplot(iris[,1:4],pam(iris[,1:4],4,diss=F)$cluster,

+ labels=2,col.p=c("red","blue","green")[iris[,5]])

> pairs(iris[,1:4],pch=pam(iris[,1:4],4,diss=F)$cluster,

+ col=c("red","blue","green")[iris[,5]],cex=1.5)
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Silhouette plot

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of pam(x = iris[, 1:4], k = 3)

Average silhouette width :  0.55

n = 150 3  clusters  Cj
j :  nj | avei∈Cj  si

1 :   50  |  0.80

2 :   62  |  0.42

3 :   38  |  0.45

> plot(silhouette(pam(iris[,1:4],3)))

33



Other silhouettes

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of pam(x = iris[, 1:4], k = 2)

Average silhouette width :  0.69

n = 150 2  clusters  Cj
j :  nj | avei∈Cj  si

1 :   51  |  0.81

2 :   99  |  0.62

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of pam(x = iris[, 1:4], k = 4)

Average silhouette width :  0.49

n = 150 4  clusters  Cj
j :  nj | avei∈Cj  si

1 :   50  |  0.77

2 :   39  |  0.35

3 :   30  |  0.39

4 :   31  |  0.31

> plot(silhouette(pam(iris[,1:4],2)))

> plot(silhouette(pam(iris[,1:4],4)))
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Some comparisons

> table(kmeans(iris[,1:4],2)$cluster,pam(iris[,1:4],2)$cluster)

1 2

1 51 2

2 0 97

> table(kmeans(iris[,1:4],3)$cluster,pam(iris[,1:4],3)$cluster)

1 2 3

1 50 0 0

2 0 62 0

3 0 0 38

> table(kmeans(iris[,1:4],4)$cluster,pam(iris[,1:4],4)$cluster)

1 2 3 4

1 0 0 0 27

2 50 0 0 0

3 0 39 2 4

4 0 0 28 0
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Note however

> table(kmeans(iris[,1:4],4)$cluster,pam(iris[,1:4],4)$cluster)

1 2 3 4

1 0 7 0 31

2 0 32 30 0

3 28 0 0 0

4 22 0 0 0

> table(kmeans(iris[,1:4],4)$cluster,pam(iris[,1:4],4)$cluster)

1 2 3 4

1 28 0 0 0

2 22 0 0 0

3 0 7 0 31

4 0 32 30 0

> table(kmeans(iris[,1:4],4)$cluster,pam(iris[,1:4],4)$cluster)

1 2 3 4

1 0 0 28 0

2 0 0 0 27

3 0 39 2 4

4 50 0 0 0
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And the secret unveiled

> table(kmeans(iris[,1:4],3)$cluster,iris[,5])

setosa versicolor virginica

1 50 0 0

2 0 48 14

3 0 2 36

> table(pam(iris[,1:4],3)$cluster,iris[,5])

setosa versicolor virginica

1 50 0 0

2 0 48 14

3 0 2 36

> table(pam(iris[,1:4],3,diss=FALSE)$cluster,iris[,5])

setosa versicolor virginica

1 50 0 0

2 0 48 14

3 0 2 36

(The latter is more stable, however - if you try to run each
command several times, you can see it)
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More of the toy data...

income lot riding income lot riding

1 60.0 18.4 1 13 75.0 19.6 0

2 85.5 16.8 1 14 52.8 20.8 0

3 64.8 21.6 1 15 64.8 17.2 0

4 61.5 20.8 1 16 43.2 20.4 0

5 87.0 23.6 1 17 84.0 17.6 0

6 110.1 19.2 1 18 49.2 17.6 0

7 108.0 17.6 1 19 59.4 16.0 0

8 82.8 22.4 1 20 66.0 18.4 0

9 69.0 20.0 1 21 47.4 16.4 0

10 93.0 20.8 1 22 33.0 18.8 0

11 51.0 22.0 1 23 51.0 14.0 0

12 81.0 20.0 1 24 63.0 14.8 0

Whether a customer bought a riding-mower or not.

Depending on the income and lot size.

Important question: out of the potential new customers, predict
(on the basis of their income and lot size) who is likely to buy a
riding mower.
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...nice, because can be plotted
> attach(Mowers)

> plot(income,lot,pch=15*riding+1)
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Supervised classification: principles
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Classification: the game field

g = 1, . . . ,K: these are K classes (labels) relevant to the
classification task; it is assumed that each item belongs to
one and only one of these K classes. The simplest and most
frequented case is K = 2, but larger K are not excluded.

G = 1, . . . ,K: these are K possible decisions, classes into which
each item is to be classified;

c(g|G): the nonnegative loss function, the cost of classifying an
item from g-th class to G-th class

The equality of the cost c(g|G) to 0 expresses that the
classification from g-th class to G-th class is considered correct.
In typical situations, K = K and the G’s are in a simple one-
one correspondence with the g’s - that is, c(g|G) = 0 for G = g.
(Decisions also of the type “undecided” and similar are somewtimes
considered, in which case K may be different from K.) Any
outcome with c(g|G) > 0 is referred to as a misclassification
and c(g|G) in such a case is called a misclassification cost. In
the absence of exact knowledge of missclasification costs, it is
customary to set c(g|G) = 1 for all g and G with c(g|G) > 0 - the
situation referred to as equal misclassification costs
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Classification: the game props

To evaluate the quality of different classification rules, we opt for
the framework in which we specify

πg: the prior probability of the g-th class (the probability that a
randomly drawn item from the population is in the g-th class).

A possible absence of knowledge about πg is often resolved
by setting πg = 1/G, the situation referred to as equal prior
probabilities; in practical applications however, one has to be
aware of the limitations of such a choice

Once c(g|G) and πg and set, then we may consider possible
classification rules: such a rule is for each item based on the
value x of classifiers (predictors, features), the variables used for
classification, for this particular item.

Note: while we speak about the “value” of x in singular, it is
typically a vector of values from some X. Classifiers may be
of different nature: some of them are numeric, other may be
categorial, etc. Their nature thus determines the nature of X
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Classification: the rules

A classification rule is itself determined by

RG: classification regions, which for G = 1, 2, . . . ,K express how
classification rule is set; for any item, if the observed value
x ∈ X of the classifiers falls into RG, then the item is classified
into the G-th class. Thus, X is a union of RG, pairwise disjoint
(or almost disjoint, in which case typically they intersect only
at their common boundary; if x falls into this intersection, the
classification is resolved somehow, possibly by a random draw)

Having various classification rules, we seek one that is in some
sense optimal; the criterion for that can be expressed through

P(G|g): conditional probabilities that an item from the g-th class
is classified as being from the G-th class
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Classification: the criterion

Once all the above are set, we can evaluate the risk, the total
expected misclassification cost;∑

g

∑
G

πgP(G|g)c(g|G)

We seek a classification rule with the minimal total expected
misclassification cost; in the situation of equal missclassification
costs, when K = K, c(g|G) = 0 for G = g, and all other c(g|G) = 1,
the equivalent criterion to minimize is the total misclassification
probability (error rate)∑

g

∑
G 6=g

πgP(G|g)

Once again, the classification setting has fixed and given πg and
c(g|G); what is needed to figure out are P(G|g). If we model an
outcome x ∈ X of classifiers as a realization of a random element
X of X, with a distribution dependent on g, then

P(G|g) = P[X ∈ RG|g]
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Classification: the optimal Bayes rule

It is possible to derive the optimal rule if we know, for every g,

fg(x): the density of distribution of features (for x ∈ X), the
density of X given that the item belongs into the g-th group.
(This density has to be understood in a very broad sense, with
respect to a suitable dominating measure: it can be a density,
a probability mass function, or a combination of those)

The optimal Bayes classification rule is:

classify into G-th class

if
∑
g

πgfg(x)c(g|G) is the smallest among all G

In case if there is more than one smallest quantity above, we
may classify into any of these - the rule remains optimal for every
alternative. In theory, such a situation often occurs with probability
zero; in practice, we may need to resolve the ambiguity somehow
- one of the (valid!) possibilities is then a random draw
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The proof
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Special cases

In the situation of equal misclassification costs, when K = K,
c(g|G) = 0 for G = g, and otherwise c(g|G) = 1, the optimal
Bayes rule is equivalent to:

classify to the G-th group, G = g

if πgfg(x) is the largest among all g

The last condition is equivalent to looking for the largest posterior
probability

πgfg(x)∑
g

πgfg(x)
is the largest among all g

The posterior probability for the g-th class is obtained via the Bayes
theorem, as the conditional probability of an item being in the g-th
class given the densities fg(x) and the prior probabilities πg

Posterior probabilities provide additional information about how
“clear-cut”, “unambiguous” the classification is.
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The special case of two classes

The case with K = 2, when there are only two classes, is quite
common: apart from the examples we already have, we can
mention other ones: classifying email as spam and non-spam,
classifying patients as healthy and ill (with specific disease), etc.

The optimal Bayes classification rule is in this case as follows:

if π2f2(x)c(2|1) 6 π1f1(x)c(1|2) then classify to class 1

if π2f2(x)c(2|1) > π1f1(x)c(1|2) then classify to class 2

As already mentioned, in the of equality we may classify into either
class, and the rule in each case remains optimal

The equivalent expression (neglect possible complications with
division by zero) of the rule above is:

if
π1f1(x)

π2f2(x)
>
c(2|1)

c(1|2)
or equivalently

f1(x)

f2(x)
>
π2c(2|1)

π1c(1|2)

then classify to class 1 (and otherwise to 2)
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Classification: the real life

Thus, there would be no problem here - if everything above would
be known. Well, we may set the missclassification costs; but other
quantities, especially the densities fg, and often also πg, are in
practice not known.

What then? Dealing with πg is not that difficult, but fg are not
that easy to tackle. We can estimate them somehow, and use
the estimates instead. But also, what we are really after are
classification regions RG, so we can estimate those: instead of
the fg’s, we can estimate directly the posterior probabilities. Or
perhaps do yet something else...

Thus, in practice we may not be able to use the optimal Bayes
rule (except perhaps in very simple situations), but its existence is
important anyway: it tells us what is the best what we can achieve
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A word about prior probabilities

Regarding the prior probabilities, πg,

- we either know them somehow, and then we set them up -
this is what theory supposes us to do (the result about optimal
classification regions does not hold for πg somehow estimated
from data, but only for known πg and known fg; when we
estimate those quantities, we only hope getting close to the
ideal)

- or in the lack of specific knowledge about πg, we may set them
to be all equal, πg = 1/K (this still means that we set them up)

The other alternative is that we estimate πi, which can be done
either

- either from the training sample itself

- or from some other dataset

(The estimation is then typically done by taking proportions)
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The special case of two classes continued

In the case when K = 2, once we estimate all necessary quantities
and end up with concrete (estimated) rule, the expression derived
above suggests that it has a form

if rule(x) > threshold then classify to 1, otherwise to 2

What goes to “rule” and what to “threshold”? That depends on
the method.

If we can incorporate the prior probabilities π1,π2 into the rule

(and know them), then threshold =
c(2|1)

c(1|2)

if the prior probabilities are not in the rule, then the threshold

may be
π2c(1|2)

π1c(2|1)
for equal misclassification costs

π2

π1

In any case, the lower the threshold, the easier to get classified as 1
(which can be motivated, say, by the cost of missclassification from
2 to 1 being high compared to that from 2 to 1). And conversely:
the higher the threshold, the harder to get classified as 1
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ROC curve
(ROC - Receiving operating characteristic; from engineering)

If we single out one of the classes, we can look at how the
rule performs for various thresholds - which arise from different
circumstances involving misclassification costs and possibly prior
probabilities as well.

If we single out class 1 - let’s say, classifying person as ill (in the
medical language positive), then low threshold means we prefer
to classify person rather ill than healthy (which comes from the
comparison of misclassification costs and also possibly priors)

We can summarize the behavior for various thresholds by varying
those, and plot

true positive rate against false positive rate

that is
# of 1’s classified as 1

# of all 1’s
against

# of 2’s classified as 1

# of all 2’s

The overall performance of classifier is then summarized by the
Area Under the (ROC) Curve (AUC)

(The example will be shown later, with discriminant analysis)
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Classification: theoretical error analysis

We have now a classification rule and would like to evaluate how
good it is. If we knew the densities fg, we would use them for
deriving the optimal RG; as we do not know them, we have to take
with the estimates R̂G. However, we can still assume (or pretend)
we know the the densities fg for the purpose of evaluation. In such
case, we can express the relevant probabilities P(G|g) as∫

RG

fg(x)dx or

∫
R̂G

fg(x)dx

We know that the classification regions RG are optimal, hence
in terms of the total expected misclassification costs or total
misclassification probabilities, we cannot do any better in terms
of the total expected misclassification cost∑

g

∑
G

c(g|G)πg

∫
RG

fg(x)dx 6
∑
g

∑
G

c(g|G)πg

∫
R̂G

fg(x)dx

or, when the misclassification costs are equal, in terms of the true
error rate∑

g

∑
G 6=g

πg

∫
RG

fg(x)dx 6
∑
g

∑
G 6=g

πg

∫
R̂G

fg(x)dx
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Classification: practical error analysis

But still, we do not know fg: so the only method to figure out
the true error rate is to estimate it - by repeating the classification
many times and recording the results.

Apparent error rate: we crosstabulate the actual (known) classes
of the sample and predicted (computed) classification for the same
items. We obtain a k× k table (“confusion matrix”) in this way:
its diagonal shows the numbers of correctly classified items; all
other numbers are those of incorrectly classified items. We take
the sum of the latter and divide by the total number of items.

We are interested in the apparent error rate only as long as it gives a
good estimate of the true error rate (probabilities), as this indicates
the error rate for future observations - which, if low, indicates that
the classification rule has good generalization properties.
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A small example: more to come

A very crude classification: according to the lot size. If a customer
has lot size large than 19, they are likely to buy a riding mower.
Otherwise not. What is the apparent error rate?
(We believe in the continuity of lot size, which allows us not to worry about what
happens when the size is exactly 19 - an event with zero probability. Problems
of this type, while of practical importance, are here an inessential technical
complication obscuring the greater picture.)
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lo
t > cl = table(lot > 19,riding)

> cl

riding

0 1

FALSE 9 3

TRUE 3 9

> (cl[1,2]+cl[2,1])/sum(cl)

[1] 0.25
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Data splitting

Apparent error rate calculated on the working (training) dataset is
usually not very good estimate of the true error rate, as there is
a possible “conflict of interest”: the same items that were used
for the estimation of the rule are now used for its evaluation, so
the final results is likely to be biased. A better estimate is usually
obtained through the apparent error rate calculated on some other
data, different from those we constructed the classification rule
from. In this respect, we speak about

Validation dataset(s): the dataset(s) we use for the evaluation
of the performance of the classification rule

Now, if we have a lot of data items available, it is not hard to
arrange for all required datasets: we split the data, use someof
it to construct a classification rule, and keep aside some for the
validation purpose

Note: this is an ideal strategy, and should be used whenever there
is an abundance of data
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Data reuse

The more intricate situation occurs when we do not have enough
data for satisfactory splitting (the working, training/validation
dataset is too small to yield stable results). Then, we would like
to attempt using the working (training) dataset also for validation:
estimate true error rate by the apparent error rate on the same
dataset.

However, the results obtained in this way may have severe
limitations; in particular, the biggest danger is that the error rate
estimated on the working dataset may be too optimistic compared
to the true error rate, the phenomenon wich is called overfitting.

While we never can avoid this completely, we can try at least
partially. One of the possible strategies may be keeping the rule
simple; if it cannot adapt too well to the working (training) sample,
then the risk of overfitting is lesser. But the problem then may
be also underfitting: some other rule, a bit more flexible, may
performs better in terms of the true error.

Another, widely used and general strategy to reuse the same
dataset and still at least partially avoid overfitting is cross-
validation.
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Cross-validation: the description

M-fold cross-validation (hold-out) proceeds as follows.

We divide data to M groups (approximately of the same size; it is
also good to use some random allocation). For m from 1 to M,
we

1. omit m-th group from the data;

2. estimate the classification rule from the rest of data;

3. classify the items of m-th group on the basis of this rule;

4. record the number of misclassified items.

When finished, we compute a summary apparent error rate from
all M runs.

A popular choice is M = 10, because then we have to run the
procedure only ten times, which is good if it is computationally
expensive. (Sometimes only M = 2 is feasible.)
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Leave-one-out cross-validation

Another popular choice is M = n, the number of data points; in
this case we also speak about leave-one-out cross-validation. This
is a favored choice if computations are inexpensive - in particular
for procedures that are linear in classifiers - then we do not have to
compute the classification n times actually, but there is a numerical
trick avoiding that

Cross-validation may be used not only for the overall evaluation
of the classification rule, but also for fine tuning (that is,
determination of certain parameters) of an estimated classification
procedure. We will see this later on examples
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Nonparametric classification:
density estimation and nearest neighbors
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Recall: kernel density estimator

f̂(x) =
1

nb

∑
i

K

(
xi− x

b

)
kernel:

∫
K(u)du = 1 and also K(u) > 0

Examples: Gaussian (standard normal density), Epanechnikov,
Rectangular (Parzen), and others
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What does rectangular kernel mean? For b = 1, 1
n

∑
iK(xi− x) is

the relative proportion number of points falling into [x− 1/2,x+
1/2]; for general b, we obtain the relative proportion of points
falling into [x−b/2,x+b/2], divided by the length b of the interval.

61



Different bandwidth

The same bandwidth b may not equally adapt to all parts of the
data
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Modification (inversion?) of the kernel idea

For fixed b and x, we take the relative proportion of points xi falling
into [x− b/2,x+ b/2] divided by the length of the interval...

Invert: for fixed x, take k/(nbk) where bk is the length of
an interval [x − bk/2,x + bk/2] containing k nearest neighbors,
neighboring data points xi of x (this including x itself, if x is a
datapoint, equal to some xi).

Such modification is particularly good for classification, and leads
to the
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Method of k nearest neighbors

Method of k nearest neighbors:

(0. Scale all variables, so that they have unit standard deviation.)

1. Fix k

2. Given the classifiers x for an item to be classified, find k items in
the working (training) dataset whose classifiers are closest (in some
suitable, in the simplest case the Euclidean distance on Rp) to x.
The posterior probability for the g-th class is then the proportion
of elements from g-th class among the k nearest neighbors. The
classification decision is (typically) done by the rule of simple
majority (sometimes more elaborate voting schemes may be used)
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Properties

Not that bad:

- nice interpretability (“out of k past items with closest features,
` belonged to category i”)

- well adapts to irregular shapes (“leopard skin”) of classification
regions

- easily generealized to more than two classes

Not that good:

- computationally, need to store all the training set (but then, it
can constantly learn)

- somewhat unstable

- not scale (affine) equivariant: scaling is usually a must

- needs to specify k

Extensions:

- treatment of priors/unequal classification costs

- “smooth” weights
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Aspects of k

Can be used with k = 1; then it divides the feature space to Voronoi
(Dirichlet, Thiessen) polygons.
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Selection of k by (leave-one-out) cross-validation

> library(class) ## note: a package is needed

> mow=scale(Mowers[,1:2])

> cltab=array(0,dim=c(2,2,10))

> clerr=rep(0,10)

> for (k in 1:10) {

+ cl=rep(0,nrow(mow))

+ for (j in 1:nrow(mow)) {

+ cl[j]=knn(mow[-j,1:2],Mowers[j,1:2],mowers[-j,3],k)

+ }

+ cltab[,,k]=table(cl,Mowers[,3])

+ clerr[k]=1-(cltab[1,1,k]+cltab[2,2,k])/sum(cltab[,,k])

+ }

> signif(clerr,3)

0.375 0.333 0.167 0.292 0.208 0.208 0.250 0.417 0.250 0.208

1 2 3 4 5 6 7 8 9 10

8 5 7 3 10 2 8 3 9 2 9 2 8 2 7 5 8 2 9 2

4 7 5 9 2 10 4 9 3 10 3 10 4 10 5 7 4 10 3 10
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Mowers
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> table(knn(mow[,1:2],mow[,1:2],Mowers[,3],3),mowers[,3])

0 1

0 10 2

1 2 10
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Bank data: code

> ...

> signif(clerr,3)

0.196 0.196 0.152 0.152 0.152 0.109 0.196 0.217 0.196 0.217

> banksc = scale(Bank0)

> banknn=knn(banksc,banksc,Bank[,5],6,prob=TRUE)

> table(banknn,Bank[,5])

banknn 0 1

0 19 4

1 2 21

> bsam = sammon(dist(Bank[,1:4]))

> plot(bsam[[1]],pch=15*Bank[,5]+1)

> points(bsam[[1]][banknn!=Bank[,5],],pch=4,cex=2)
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And the indicative plot of the result
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Problems

> table(knn(banksc,banksc,Bank[,5],6),Bank[,5])

0 1

0 18 3

1 3 22

> table(knn(banksc,banksc,Bank[,5],6),Bank[,5])

0 1

0 19 2

1 2 23

> table(knn(banksc,banksc,Bank[,5],6),Bank[,5])

0 1

0 19 4

1 2 21

> table(knn(banksc,banksc,Bank[,5],6),Bank[,5])

0 1

0 19 4

1 2 21

> table(knn(banksc,banksc,Bank[,5],6),Bank[,5])

0 1

0 19 3

1 2 22
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Classification probabilities

> banknn$prob

NULL

> cls=signif(attr(banknn,"prob"),3)

> names(cls)=banknn

> cls

0 0 0 0 0 0 0 0 0 0

1.000 1.000 0.833 1.000 0.833 0.833 0.667 1.000 0.833 1.000

0 0 0 0 1 1 0 0 0 0

1.000 0.833 0.500 1.000 0.667 0.833 0.833 0.833 0.667 0.667

0 1 1 1 1 1 1 1 0 1

1.000 0.833 0.833 0.833 0.833 1.000 1.000 0.833 0.667 0.833

1 1 1 0 1 1 1 1 1 0

1.000 1.000 0.833 0.833 1.000 1.000 0.667 0.667 0.833 0.500

0 1 1 1 1 1

0.500 1.000 0.833 0.833 0.667 1.000
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Remedy?

Make all ambiguous votings classifying to 1 - and also make probs
to be those for 1 (so 1-those are those for 0)

> knnadj = function(...) {

+ knnadj = knn(...,prob=TRUE)

+ knnadj[attr(knnadj,"prob")==0.5] <- 1

+ oldprob = attr(knnadj,"prob")

+ attr(knnadj,"prob") = (as.numeric(knnadj)-1)*oldprob +

+ (2-as.numeric(knnadj))*(1-oldprob)

+ knnadj

+ }

> banknnn <- knnadj(banksc,banksc,Bank[,5],6)

> signif(cbind(banknnn,1-attr(banknnn,"prob"),

+ attr(banknnn,"prob")),3)
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Well...

[,1] [,2] [,3] [,1] [,2] [,3] [,1] [,2] [,3]

[1,] 0 1.000 0.000 [18,] 0 0.833 0.167 [35,] 1 0.000 1.000

[2,] 0 1.000 0.000 [19,] 0 0.667 0.333 [36,] 1 0.000 1.000

[3,] 0 0.833 0.167 [20,] 0 0.667 0.333 [37,] 1 0.333 0.667

[4,] 0 1.000 0.000 [21,] 0 1.000 0.000 [38,] 1 0.333 0.667

[5,] 0 0.833 0.167 [22,] 1 0.167 0.833 [39,] 1 0.167 0.833

[6,] 0 0.833 0.167 [23,] 1 0.167 0.833 [40,] 1 0.500 0.500

[7,] 0 0.667 0.333 [24,] 1 0.167 0.833 [41,] 1 0.500 0.500

[8,] 0 1.000 0.000 [25,] 1 0.167 0.833 [42,] 1 0.000 1.000

[9,] 0 0.833 0.167 [26,] 1 0.000 1.000 [43,] 1 0.167 0.833

[10,] 0 1.000 0.000 [27,] 1 0.000 1.000 [44,] 1 0.167 0.833

[11,] 0 1.000 0.000 [28,] 1 0.167 0.833 [45,] 1 0.333 0.667

[12,] 0 0.833 0.167 [29,] 0 0.667 0.333 [46,] 1 0.000 1.000

[13,] 1 0.500 0.500 [30,] 1 0.167 0.833

[14,] 0 1.000 0.000 [31,] 1 0.000 1.000

[15,] 1 0.333 0.667 [32,] 1 0.000 1.000

[16,] 1 0.167 0.833 [33,] 1 0.167 0.833

[17,] 0 0.833 0.167 [34,] 0 0.833 0.167
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...and also

> table(knnadj(banksc,banksc,Bank[,5],6),Bank[,5])

0 1

0 18 2

1 3 23

> table(knnadj(banksc,banksc,Bank[,5],6),Bank[,5])

0 1

0 18 2

1 3 23

> table(knnadj(banksc,banksc,Bank[,5],6),Bank[,5])

0 1

0 18 2

1 3 23

> table(knnadj(banksc,banksc,Bank[,5],6),Bank[,5])

0 1

0 18 2

1 3 23
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Classification classics: discriminant analysis
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Assume that the distributions of the groups are
multivariate normal

f(x) =
1√

(2π)pdet(Σ)
e−

1
2(x−µ)TΣ−1(x−µ)

We invoke the optimal rule for classifying with minimum expected
cost of misclassification:

classify to G-th class when
∑
g 6=G

πgfg(x)c(g|G) is the smallest

For equal misclassification costs, this rule is equivalent to:

classify to g-th class when πgfg(x) is the largest

or equivalently

classify to g-th class when log(πgfg(x)) is the largest

We will evaluate those log-scores now
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Classification scores, LDA and QDA

When all fg are multivariate normal, then the (log) scores are

logπg−
1
2 log det(Σg) −

1
2(x −µg)

TΣ−1
g (x −µg)

Note: we are always omitting terms irrelevant to comparisons -
constants present in all scores, etc. Thus, if all Σg are all equal to
one Σ, then the scores simplify to

logπg−
1
2µ

T
gΣ

−1µg+µ
T
gΣ

−1x

These scores are linear in x and thus also the boundaries of the
classification regions they induce are linear; hence we speak about
Linear Discriminant Analysis (LDA)

If Σg are considered not equal, then the boundaries are quadratic:
we speak about Quadratic Discriminant Analysis (QDA)

78



Well: but µg and Σg (or Σ) are not known

Not known? Replace by estimates!

In the actual scores, µg and Σg are replaced by their estimates -
sample versions x̄g and Sg

When all Σg are considered equal to a common Σ, then Σ is
replaced by the pooled estimate

Spooled =

∑
g

(ng− 1)Sg∑
g

(ng− 1)

There are also other ways to deal with the µg and Σg, but this
is the most straightforward, and often satisfactory. It is called
plug-in rule or prediction

A true Bayesian would not do that, but instead use a predictive
rule (prediction), which takes a linear combination of the normal
distribution for various µg, each weighted by its posterior
probability.
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Mowers: LDA

Solid line: prior estimated from the data, thus equal to (0.5,0.5)
plug-in and predictive predictions equal

Dotted line: prior set to (0.2,0.8), plug-in prediction

Dashed line: prior set to (0.2,0.8), predictive prediction
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Some code to try

> library(MASS)

> ldob=lda(riding~income+lot,data=Mowers)

> ldob

...

> predict(ldob)

...

> predict(ldob)$class

[1] 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0

Levels: 0 1

> predict(ldob)$posterior

0 1

1 0.78203155 0.217968446

2 0.49449211 0.505507885

3 0.15236751 0.847632493

4 0.31924493 0.680755073

5 0.00402325 0.995976750

...

> ?lda

> ?predict.lda
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LDA another way: Fisher’s linear discriminants

They are something like “principal components for K groups”: we
look for a(’s) maximizing

aT
(∑

g(µg− µ̄)(µg− µ̄)
T
)

a

aTΣa
In the sample version:

aT

∑
g

ng(x̄g− x̄)(x̄g− x̄)T

 a

aT

∑
g

ng∑
j

(xjg− x̄g)(xjg− x̄g)
T

 a

=
aTBa

aTWa
,

where x̄g is the sample mean of the g-th class and x̄ is the sample
mean of all data. Note that the maximized function is same for ca
as for a; hence we may set aTa = 1, for all a.

Similarly to principal component analysis, we are looking for
maximizing a1; then for maximizing a2 orthogonal to a1; and so
forth. The solutions are found via eigenvalues and eigenvectors
of W−1B
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Fisher’s linear discriminants

The rank of matrix W−1B is at most min{p,K− 1}

as the rank of W−1 is p (easy)

and the rank of B is K− 1 (a bit of exercise)

Fisher’s linear discriminants: projections of the datapoints given
by the maximizing aj: given that aT

j aj = 1, these are vectors of
length n, with elements

aT
j xi for i = 1, . . . ,n

The restriction on the rank of W−1B means there are at most
min{p,K− 1} linear discriminants; recall that p is the number of
classifiers and K the number of classes
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And the classification rule based on them

The classification rule using first r linear discriminants would be:

classify to G-th class if
r∑
j=1

(aT
j (x − x̄G))

2 6
r∑
j=1

(aT
j (x − x̄g))

2 for all g 6=G

It is equivalent to the LDA as derived above, if:

all prior probabilities are equal

and r = g− 1 (all discriminants are used)
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Indeed
> try.lda=lda(riding~income+lot,data=Mowers)

> try.lda

...

Group means:

income lot

0 57.400 17.63333

1 79.475 20.26667

Coefficients of linear discriminants:

LD1

income 0.0484468

lot 0.3795228

> trycf=try.lda$scaling/sqrt(sum(try.lda$scaling^2))

> sc1=(as.matrix(Mowers[,1:2]) %*% trycf)

+ - c(try.lda$means[1,] %*% trycf)

> sc2=(as.matrix(Mowers[,1:2]) %*% trycf)

+ - c(try.lda$means[2,] %*% trycf)

> as.numeric(sc2^2 <= sc1^2)

[1] 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0

> predict(try.lda)$class

[1] 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0
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Plotting

Linear discriminants (first one or two) are often plotted (like
principal components)
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Iris data
> try.lda=lda(Species~.,data=iris)

> try.lda

...

Prior probabilities of groups:

setosa versicolor virginica

0.3333333 0.3333333 0.3333333

Group means:

Sepal.Length Sepal.Width Petal.Length Petal.Width

setosa 5.006 3.428 1.462 0.246

versicolor 5.936 2.770 4.260 1.326

virginica 6.588 2.974 5.552 2.026

Coefficients of linear discriminants:

LD1 LD2

Sepal.Length 0.8293776 0.02410215

Sepal.Width 1.5344731 2.16452123

Petal.Length -2.2012117 -0.93192121

Petal.Width -2.8104603 2.83918785

Proportion of trace:

LD1 LD2

0.9912 0.0088
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Linear discriminants for Iris data
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The geometry shows correctly only on the
equiscaled plot
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The bigger (and still equiscaled) picture

-20 -10 0 10 20

-2
0

-1
0

0
10

20

LD1

LD
2

90



QDA and other aspects

If we don’t assume variance matrices equal, and fit them separately,
then we obtain quadratic boundaries: quadratic discriminant
analysis (QDA). Its results “may be strange”.

We don’t have to scale the variables - LDA is not vulnerable to
it. In what sense: if we transform classifiers linearly, the results of
LDA transform accordingly.

Other aspects:

- we can also use transformed features as classifiers

- variable selection (selection of classifiers)

Implementation: functions lda() and qda() in library(MASS). They
use model formula notation: response is the class indicator,
predictors are classifiers.
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Regression interpretation

The connection to least squares

If there are only two classes (coded −1 and 1), and if there is
the same number of items in these classes, then, if we run a
linear regression of these classes (with the codes above) on the
classifiers, the intersection of the fitted plane with level 0 (now
we see why we need fixed codes) gives the separating plane for
the linear discriminant analysis with equal prior probabilities and
misclassification costs.

Even if the number of the points in the classes is not the same:
the level zero set is parallel

The connection to logistic regression

That will be thoroughly discussed later; note now that the
estimates “logarithmic scores” are in fact estimates of the logs
of posterior probabilities (or proportional to those)

Also, R implementation draws on regression interpretation:
formula notation, response, etc.
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Mowers: QDA in an analogous way as LDA

> library(MASS)

> attach(Mowers)

> plot(income,lot,pch=15*riding+1)

> try.qda

Call:

qda(riding ~ income + lot, data = Mowers)

Prior probabilities of groups:

0 1

0.5 0.5

Group means:

income lot

0 57.400 17.63333

1 79.475 20.26667

Solid and dotted line: prior estimated from the data, (0.5,0.5)
plug-in and predictive predictions are different, however

Dotted line: prior set to (0.2,0.8), plug-in prediction

Dashed line: prior set to (0.2,0.8), predictive prediction
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The QDA picture
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Bank data: LDA
> library(MASS)

> bsam=sammon(dist(Bank[,1:4]))

> plot(bsam[[1]],pch=15*Bank[,5])

> banlda=lda(k~.,data=Bank)

> wrong=Bank[,5] != predict(banlda)$class

> points(bsam[[1]][wrong,],pch=4,cex=2)
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Bank data: QDA
> bsam=sammon(dist(Bank[,1:4]))

> plot(bsam[[1]],pch=15*Bank[,5])

> banqda=qda(k~.,data=Bank)

> wrong=Bank[,5] != predict(banqda)$class

> points(bsam[[1]][wrong,],pch=4,cex=2)
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Finally, promised ROC curves: mowers
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And bank data
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Classification via regression:
logistic regression and relatives
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Multinomial logistic regression

N observations Yi falling into K classes

Ng of them falling in the g-th class, N1 +N2 + · · ·+NK =N

Each observation falls into g-th class with probability
pg(x) depending on x

p1(x) + p2(x) + · · ·+ pK(x) = 1

For the i-th observation x becomes xi; for the g-th class, the
dependence on xi is expressed in linear way through parameter
vector βg. We abbreviate

α+β1gxi1 + . . .βpgxip as α+ xT
iβg

Note: while we have common α here for every g, there may be
extra intercept for each g via the other covariates
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Poisson model

The “symmetric” approach relaxes the requirement that all Ng
sum to N, and thus may take the Poisson, loglinear model, for the
counts Yig:

log(E(Yig)) = α+ xT
iβg

Once the counts are estimated, one finds their sum (corresponding
to N) divides by it, to yield probabilities summing to 1; this
determines α. The model for the probabilities is then

P[Yi=1] =
exT
i
β1∑K

g=1 e
xT
i
βg

P[Yi=2] =
exT
i
β2∑K

g=1 e
xT
i
βg

. . . P[Yi=K] =
exT
i
βK∑K

g=1 e
xT
i
βg

This model is not identified: one can add any fixed constant to βg
and the fraction remains the same
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Equivalent logistic models

To identify the model, we may set coefficients for some g to zero;
this could be done for g = K, or, as in the R implementation, for
g = 1. The model then becomes

P[Yi=1] =
1

1 +
∑K
g=2 e

xT
i
βg

P[Yi=2] =
exT
i
β2

1 +
∑K
g=2 e

xT
i
βg

. . . P[Yi=K] =
exT
i
βK

1 +
∑K
g=2 e

xT
i
βg

which can be equivalently interpreted as K−1 logistic models: class
2 vs class 1, class 3 vs class 1, . . . , class K vs class 1

However, the choice of g = 1 or g = K is not substantial: the
model is inherently symmetric (as is the standard binary logistic
model)

The model is then estimated by (penalized) maximum likelihood

The probability predictions are the predictions of posterior
probabilities - and are used accordingly to predict the class
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Logistic regression (univariate)

Logistic regression is thus a special case - only customarily the
classes are now coded as 0 and 1. We also change β2 to β:

P[Yi=0] =
1

1 + exT
i β

P[Yi=1] =
exT
i β

1 + exT
i β

Knowing that P[Yi=0] = 1 − P[Yi=1], we can focus on P[Yi=1]

and use the logit transformation

log

(
P[Yi = 1]

1 − P[Yi = 1]

)
= xT

iβ

Once β is estimated by β̂, we have the predictions of posterior
probabilities

1

1 + exT
i β̂

and
exT
i β̂

1 + exT
i β̂
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The connection to the LDA

In the linear discriminant analysis with two categories, the
expressions for the posterior probabilities are

π0f0(x)

π0f0(x) +π1f1(x)
and

π1f1(x)

π0f0(x) +π1f1(x)

or also

1

1 +
π1f1(x)

π0f0(x)

and

π1f1(x)

π0f0(x)

1 +
π1f1(x)

π0f0(x)

If both f0 and f1 are the densities of multivariate normal distribution
with the same Σ, then the above posterior probabilities are

1

1 + ea+bTx
and =

ea+bTx

1 + ea+bTx

That indicates that both LDA and logistic regression estimate the
same quantities - although they do not yield necessarily the same
results. as the estimators are different)
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LDA as regression

Two classes: if we code them by -1 and 1, and fit the linear
regression of classes on classifiers (features),

the level zero set of the fitted hyperplane

is the LDA boundary (with equal prior probabilities and
missclasification costs)

when there is the same number of points in both classes

(Even if not, the level zero set is parallel)

> lm(2*riding-1~income+lot,data=mowers)

Coefficients:

(Intercept) income lot

-5.47100 0.02522 0.19761

> plot(mowers[,1],mowers[,2],pch=15*mowers[,3]+1)

> abline(5.471/0.19761,-0.02522/0.19761)

The only problem with such a regression: not too handy for
predicting probabilities...
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LDA as regression for mobile mowers
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So what is the difference?

The difference is in the method: logistic regression maximizes the
binomial likelihood conditionally on regressors, while LDA utilizes
the covariance information in them. The results are often pretty
much the same; the logistic regression is reported to be about 30%
less efficient if the LDA normality assumptions hold.

On the other hand, logistic regression is more flexible, in particular
with respect to incorporating qualitative classifiers, etc.
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LDA and logistic regression: mobile mowers

> mowlda=lda(riding~income+lot,data=Mowers)

> mowlog=glm(riding~income+lot,data=Mowers,family=binomial)
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None of these has to be a “perceptron”, however

Linear separation with minimal apparent error rate (perceptron)
may be still different from both LDA and logistic regression (see
augmented data below, 13 points of each category now)

> mowersp <- rbind(Mowers,c(80,19,1),c(75,18,0))
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Mobile mowers: add interaction?

> mowlog=glm(riding~income+lot+I(income*lot),data=Mowers,

+ family=binomial)

> summary(mowlog)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -37.433891 41.179585 -0.909 0.363

income 0.280810 0.574596 0.489 0.625

lot 1.560129 2.085627 0.748 0.454

I(income * lot) -0.008915 0.029744 -0.300 0.764
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Bilinear logistic regression
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Mobile mowers: add all quadratic terms?

> mowlog=glm(riding~income+lot+I(income*lot)+I(lot^2),

+ data=Mowers,family=binomial)

> mowlog=glm(riding~income+lot+I(income*lot)+I(lot^2)+I(income^2),

+ data=Mowers,family=binomial)

> summary(mowlog)

...

Estimate Std. Error z value Pr(>|z|)

(Intercept) 20.7446485 84.6472477 0.245 0.806

income 0.3047331 0.8640822 0.353 0.724

lot -4.7782138 8.0562174 -0.593 0.553

I(income * lot) -0.0061966 0.0336469 -0.184 0.854

I(income^2) -0.0004715 0.0026086 -0.181 0.857

I(lot^2) 0.1632251 0.2075052 0.787 0.432
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Go further?
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Bank data: logistic regression

> library(MASS)

> bsam=sammon(dist(Bank[,1:4]))

> plot(bsam[[1]],pch=15*Bank$k)

> banlog=glm(k~.,data=Bank,family=binomial)

> wrong=(Bank$k!=(predict(banlog,type=’response’)>0.5))

> points(bsam[[1]][wrong,],pch=4,cex=2)
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The result
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However

> summary(banlog)

...

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.320 2.366 -2.248 0.02459 *

v1 7.138 6.002 1.189 0.23433

v2 -3.703 13.670 -0.271 0.78647

v3 3.415 1.204 2.837 0.00455 **

v4 -2.968 3.065 -0.968 0.33286
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Simplify by dropping classifiers?

> banlog=glm(k~v3,data=Bank,family=binomial)

> table(Bank$k,(predict(banlog,type=’response’)>0.5))

FALSE TRUE

0 18 3

1 2 23

> banlog=glm(k~v3+v1,data=Bank,family=binomial)

> table(Bank$k,(predict(banlog,type=’response’)>0.5))

FALSE TRUE

0 18 3

1 1 24

> summary(banlog)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.940 1.985 -2.992 0.00277 **

v3 3.019 1.002 3.013 0.00259 **

v1 6.556 2.905 2.257 0.02402 *

> attach(Bank)

> plot(v1,v3,pch=15*k+1)
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Simplified prediction - and then revert to LDA?

> banlda=lda(k~v3+v1,data=Bank) % broken line

...

> table(k,predict(banlda)$class)

k 0 1

0 18 3

1 3 22
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Bank data in two dimensions now
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A look at residuals: code

> par(mfrow=c(2,2))

> plot(v1,residuals(banlog,type=’deviance’),pch=15*k+1)

> plot(v1,residuals(banlog,type=’pearson’),pch=15*k+1)

> plot(v1,residuals(banlog,type=’response’),pch=15*k+1)

> plot(v1,residuals(banlog,type=’working’),pch=15*k+1)
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A look at residuals: pictures
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Further look at residuals

> plot(v3,residuals(banlog),pch=15*k+1)
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Quadratic term in v3?

> banlog=glm(k~poly(v3,2)+v1,data=Bank,family=binomial)

Warning message:

fitted probabilities numerically 0 or 1 occurred in: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart,

...

> table(k,predict(banlog)>0.5)

k FALSE TRUE

0 19 2

1 3 22
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Odd?
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Interaction?

> banlog=glm(k~v1+v3+I(v1*v3),data=Bank,family=binomial)

> table(k,predict(banlog)>0.5)

k FALSE TRUE

0 18 3

1 2 23

>summary(banlog)

...

Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.234 2.509 -2.883 0.00393 **

v1 21.141 9.201 2.298 0.02158 *

v3 3.627 1.286 2.820 0.00480 **

I(v1 * v3) -6.953 3.476 -2.000 0.04549 *
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The result (broken: LDA in a same way!)
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More than two classes now
> library(nnet)

> iris.log=multinom(Species~.,data=iris)

# weights: 18 (10 variable)

initial value 164.791843

iter 10 value 16.177348

iter 20 value 7.111438

...

iter 100 value 5.949867

final value 5.949867

stopped after 100 iterations

First, we could add a bit more iterations

> iris.log=multinom(Species~.,data=iris,maxit=300)

# weights: 18 (10 variable)

initial value 164.791843

iter 10 value 16.177348

iter 20 value 7.111438

...

iter 180 value 5.949393

final value 5.949363

converged
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And what can be done with it

> iris.log

Call:

multinom(formula = Species ~ ., data = iris, maxit = 300)

Coefficients:

(Intercept) Sepal.Length Sepal.Width Petal.Length Petal.Width

versicolor 18.40821 -6.082250 -9.396625 16.17037 -2.058115

virginica -24.23006 -8.547304 -16.077164 25.59963 16.227474

Residual Deviance: 11.89873

AIC: 31.89873

> predict(iris.log)

[1] setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa

...

[41] setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa

[51] versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor

...

[91] versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor

[101] virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica

...

[141] virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica

Levels: setosa versicolor virginica
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Just for comparison

> table(predict(iris.log),iris$Species)

setosa versicolor virginica

setosa 50 0 0

versicolor 0 49 1

virginica 0 1 49

> iris.lda = lda(Species~.,data=iris)

> table(predict(iris.lda)$class,iris$Species)

setosa versicolor virginica

setosa 50 0 0

versicolor 0 48 1

virginica 0 2 49
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“Exact plotting” also possible here
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For comparison: LDA (arbitrarily matched)
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For comparison: LDA (linear discriminants)
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Some (semi)final remarks

Not only logistic regression, but also LDA can be viewed as a
regression method for classification.

Once the normality assumption for the classifiers does not bother
us too much, our possibilities are expanded: not only we can
do some model selection, but we can also consider transformed
classifiers.

However, this entails various pitfalls. On one hand, would be nice
to have the models flexible, so that they can adapt to various
nonlinear boundaries of predicted categories. On the other hand,
this bring a danger of overfitting. Would be nice to manage all
that somehow
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And now: yet something more
Logistic regression classifying into two classes: estimation

Likelihood: the product of terms depending on yi

1

1 + exT
i β

if yi = 0 or
exT
i β

1 + exT
i β

if yi = 1

which is the same as
1

1 + exT
i β

if yi = 0 or
1

1 + e−xT
i β

if yi = 1

If we change coding from 0 to −1 (and keeping 1) it is always

1

1 + e−yix
T
i β

The negative loglikehood then (to be minimized in β) is
n∑
i=1

log
(

1 + e−yix
T
i β
)

Compare to
n∑
i=1

(1 − yix
T
iβ)+ = max {0, 1 − yix

T
iβ}

The latter corresponds to so-called support vector machine
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Digression: support vector machine

A younger brother of logistic regression
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The obsession of engineering: separated data
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This is not original, but slightly doctored riding mowers data; as
can be seen, the clasess are now (linearly) separated.
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The classification should be perfect then?
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Actually, the LDA one may be not. The logistic regression may be
better, but its problem is being numerically unstable for separated
classes (so it is not clear what result it returns)
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Indeed

> try.lda=lda(riding~income+lot,data=moo)

> table(predict(try.lda)$class,moo$riding)

0 1

0 11 1

1 1 11

> try.log=glm(riding~income+lot,data=moo,family=binomial)

Warning messages:

1: glm.fit: algorithm did not converge

2: glm.fit: fitted probabilities numerically 0 or 1 occurred

> table(predict(try.log)>0,moo$riding)

0 1

FALSE 12 0

TRUE 0 12
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Let us try even more separated data
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Maximum margin (“generalized portrait”), dim 1
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If we are mainly thinking about configurations with separated
points, it is possible to design a method that puts the divide right
halfway between the groups

Handling that geometrically is tedious; it is better to do some
fitting of the lines. When changing the coding to yi = −1 and
yi = 1, the desired configuration is obtained by crossing the level
y = 0 by the line that is the solution of
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Maximum margin (dim 1) continued
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! yi(a+ bxi) > B

The change of variables α =
a

B
, β =

b

B
makes it

|β| # min
α,β

! yi(α+βxi) > 1
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Maximum margin multidimensional

When xi is multidimensional, it is xi; and |β| also changes to β

‖β‖2 # min
α,β

! yi(α+ xT
iβ) > 1 (all i)

And it remains a quadratic programming problem once overlapping
data configurations are accommodated (which leads already to an
introduction of a tuning parameter), and then quadratic penalties
to accomodate nonlinearities: kernels, etc.
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The plot doesn’t look like it...

(broken black: LDA; broken magenta: logistic regression)
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...because it’s not properly scaled!
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Three linear classifiers for scaled data

Maximum margin overplots logistic regression here - but this may
be just a coincidence. There are similarities between the two, but
in general they are different.
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Scaling?

For simplicity, we consider methods only with the original
classifiers, not with their transformations; then

linear discriminant analysis does not need scaling

logistic regression does not need scaling

but “maximum margin method” usually does

That is one thing; another one is:

what if the classes are not separated (and thus overlap)?

Then the original problem needs to be modified!
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Regularized (linear) support vector machine

Modification: the original minimization problem

‖β‖2 # min
α,β

! yi(α+ xT
iβ) > 1 (all i)

is modified by allowing “errors” ei in the bounds - their sum is not
to exceed the a priori chosen bound C (a tuning parameter!)

‖β‖2 # min
α,β

! yi(α+ xT
iβ) > 1 − ei (all i)

and ei > 0,
∑
i

ei 6 C

The latter leads to a Lagrangian formulation (with multiplier ν
taking the rôle of C)

‖β‖2 +ν

n∑
i=1

ei # min
α,β

! ei > 0 yi(α+ xT
iβ) > 1 − ei (all i)

or

1

ν
‖β‖2 +

n∑
i=1

ei # min
α,β

! ei > max {0, 1 − yi(α+ xT
iβ)} (all i)
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End of digression: regularized logistic regression

And this eventually yields, introducing λ =
1

ν
n∑
i=1

(1 − yi(α+ xT
iβ))+ + λ‖β‖2 # min

α,β
!

Mathematical note: each C corresponds to some ν, which in turn
corresponds to some λ. From the practical point of view, this
means an additional requirement - for the data not necessarily
separated, we need to select tuning parameter C (or ν or λ)...

How about regularizing the logistic regression instead? We would
get rid of the problem when the data are separated... and retain
many good properties instead!

Let us end the digression, return to logistic regression, and take
n∑
i=1

log
(

1 + e−yix
T
i β
)
+ λ‖β‖2 # min

β
!

as a prescription for regularized logistic regression
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The dual of regularized logistic regression

Differentiating the objective function in β, we obtain

−

n∑
i=1

yie
−yix

T
i β

1 + e−yix
T
i β

xi+2λβ = 0 yielding β =
1

2λ

n∑
i=1

αixi

where we set αi =
yie

−yix
T
i β

1 + e−yix
T
i β

=
yi

1 + eyix
T
i β

for i = 1, 2, . . . ,n

On multiplying by yi (note that y2
i = 1 as yi = ±1) and substituting

for β, we obtain from the latter equation

αiyie
yix

T
i

1
2λ

∑n
j=1αjxj = 1 −αiyi

which after taking logs and some rearrangement becomes

log (αiyi) +
yi

2λ

n∑
j=1

αjx
T
i xj = log (1 −αiyi)

Taking logs is justified only for positive numbers: thus we have to
add the constraint

0 < αiyi < 1 for all i
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And the dual is

On multiplying by yi again, we obtain the equation(s)

yi log (αiyi) − yi log (1 −αiyi) +
1

2λ

n∑
j=1

αjx
T
i xj = 0

the left-hand side of which, by straightforward verification, can be
shown arising from the differentiation, in α = (α1,α2, . . . ,αn)T, of
the objective function

1

λ

n∑
i=1

n∑
j=1

αiαjx
T
i xj+

n∑
i=1

αiyi log (αiyi)+

n∑
i=1

(1−αiyi) log (1 −αiyi)

whose minimization - or more precisely, maximization of its
negative - together with the constraints 0 < αiyi < 1 for all i,
constitutes the dual problem

150



Putting kernel in

The quantity H(u1,u2, . . . ,un) = −

n∑
i=1

ui logui is called entropy;

the dual is thus maximizing the sum of entropies

H (α1y1,α2y2, . . . ,αnyn)+H (1 −α1y1, 1 −α2y2, . . . , 1 −αnyn)

penalized by −
1

λ

n∑
i=1

n∑
j=1

αiαjx
T
i xj = −

1

λ
αTXXTα

The objective function is thus influenced by X only via inner
products of lines xT

i xj. This suggests an idea to introduce in
it some other inner product function, to obtain corresponding
inner products of potential other basis functions ϕ(x). The new
formulation thus minimizes the negative of the sum of the entropies
above, penalized by

1

λ

n∑
i=1

n∑
j=1

αiαjK(xi, xj)

where K(·, ·) is a suitable function called kernel (note: the word
“kernel” here means something different than in the kernel density
estimation)
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Why we would like to do it?

Using kernels amounts to altering the space of regressors by
suitable functions of those - like we did with the polynomials,
when we added powers and products: but here it results in often
often more interesting functions than those. Moreover, the tuning
parameter λ further determines how “flexible” the fitted functional
relationships are - similarly as λ controls the shape of the fitted
spline in nonparametric regression via smoothing splines

To this end however, the inner product induced by a kernel must
exhibit properties expected from an inner product. We require
symmetry and also Cauchy-Schwarz inequality:

K(x, y) = K(y, x) and K(x, y)2 6 K(x, x)K(y, y)

The optimization problem would be well-defined if the matrix
with the elements K(xi, xj) is nonnegative-definite. To have this
property for any future xi and xj, we usually demand that the kernel
is a Mercer kernel: the matrix K(xi, xj) is nonnegative definite
for any collection x1, x2, . . . , xm (not just the one appearing in our
working dataset)
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OK, but how do we recover the primal?

Altering the dual problem also alters the primal problem (which
is, in fact, the dual of the dual). Once we have solved the
dual problem and obtained the α̂i’s, in the original problem, with
K(x, y) = xTy, we had

β̂ =
1

2λ

n∑
i=1

α̂ixi

Now, the βi’s may be different - but in fact, we are not after
them, but for classified new objects rather after xTβ̂ - because
this function determines, via inverse logit, the predicted posterior
probabilities, and thence the classes. There we have

f̂(x) = xTβ =
1

2λ

n∑
i=1

αix
Txi which is

1

2λ

n∑
i=1

αiK(x, xi)

So, let us hope that this way of recovering the prediction of the
posterior probabilities - which should be then

1

1 + ef̂(x)
and

ef̂(x)

1 + ef̂(x)

would work also in the “kernelized” situation
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Reproducing kernels

This recovery of f̂(x) can be done from the knowledge of the
basis ϕ(x) induced by the kernel - but that may be tedious and/or
computationally expensive (for some kernels, the dimension of the
space ϕ(x) is even infinite)

Luckily, it can be done in much more expedient way if the kernel
is so-called reproducing kernel; for such kernels, once once α̂ is
obtained solving the dual problem, then

f̂(x) =

n∑
i=1

αiK(xi, x)

- so called representer theorem

The definition of reproducing kernels and representer theorem are
formulated and proved in the framework of Hilbert space theory.
However, for several kernels used in practice, these properties are
alrady known
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Examples of kernels

The one we started with (“no kernel”) is the linear kernel

K(x, y) = xTy (vanilladot)

The very much used one is Gaussian (or squared exponential)
(radial basis) kernel - with this one comes also another tuning
parameter, σ):

K(x, y) = e
−
‖x−y‖2

2σ2 (rbfdot)

A somewhat similar one (also with tuning parameter σ) one is
Laplace (radial basis) kernel

K(x, y) = e−
‖x−y‖
σ (laplacedot)

Another one is polynomial kernel of degree d (and tuning
parameters τ and σ)

K(x, y)(σxTy + τ)d (polydot)

... and there are quite a few others

(The names in brackets refer to the R package kernlab)
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Let us go for some of those

Unfortunately, it seems there is no reliable implementation for
kernelized logistic regression in R yet. The following examples
have been computed via package kernlab using support verctor
machines - where the dual instead of minimizing

1

λ

n∑
i=1

n∑
j=1

αiαjK(xi, xj)

−H (α1y1, . . . ,αnyn) −H (1 −α1y1, . . . , 1 −αnyn)

minimizes

−

n∑
i=1

αi+

n∑
i=1

n∑
j=1

αiαjK(xi, xj)

under the constraints
n∑
i=1

αiyi = 0 and 0 6 αi 6 C for all i

> library(kernlab)

> ksvm(factor(riding)~income+lot,data=Mowers,scaled=F,

+ kernel=’vanilla’,C=0.01)

> ksvm(riding~income+lot,type="C-svc",data=Mowers,scaled=F,

+ kernel=’vanilla’,C=0.1)
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Mowers again: linear kernel, various C

C = 0.01, 0.1, 1, 10, 100.
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Mowers: Gaussian kernel, various C

C = 0.001, 1, 100.
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Mowers: Gaussian kernel, C = 1, various σ

σ = 0.1, 1, 10. A lot of room to play...
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Bank data, default (Gaussian kernel, C = 1)
> bsam=sammon(dist(Bank[,1:4]))

> plot(bsam[[1]],pch=15*Bank$k+1)

> bansvm=ksvm(factor(k)~.,data=Bank)

Using automatic sigma estimation (sigest) for RBF or laplace kernel

> wrong=(Bank$k!=(predict(bansvm)))

> points(bsam[[1]][wrong,],pch=4,cex=2)
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Classification trees:
classification à la old botanic identification

161



Classification trees

They use the original variables rather than their linear combinations
or other transformations. A tree-like decision scheme is
constructed, via the recursive splitting of the fitting data according
to the values of classifiers

As a rule, only binary splits are allowed, for simplicity. Splits are
chosen to optimize some splitting criterion; as the full search over
all possibilities is not algorithically feasible, the method rather looks
ahead only few steps – usually one (this is similar to the way how,
for instance, programs playing chess are implemented; in computer
science lingo such algorithms are called greedy)

The splitting is continued until the minimal prescribed size of the
leaf is reached, or until the leafs are homogeneous enough (the
deviance is small compared to the initial one)

After this, the trees are usually adjusted subjectively, to prevent
overfitting - pruning; cross-validation error rate may be a useful
indicator in this process.
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Criteria for splitting I: impurity

Apparent error rate is again not suitable. An i-th node of tree can
be seen as giving (unknown) conditional probabilities pig,

estimated by
nig

ni
=

nig∑
knig

The majority of implementations choose splits to maximize the
average impurity decrease: the impurity of a node is quantified by
some “impurity index”, the most common ones are

Gini index 1 −
∑
gp

2
ig

Entropy −
∑
gpig logpig

(convention: 0 log 0 = 0)

A good measure of this kind is supposed to be minimal (0), if one
of the pig’s is 1 (and others 0), and maximal, if the distribution is
uniform (all pig are the same)

Using entropy is motivated by information theory - and we will see
that its use is equivalent to using so-called deviance
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Average impurity decrease

“Impurity decrease” means the impurities of two nodes after the
split are subtracted from the impurity of the node before the split;
“average” means that the impurities of the subtracted notes are
before that each multiplied by the relative proportion of all the
objects in the node to all objects in the parent node.

That is, if node s, comprising ns objects in total, is split into nodes
t and u, with nt and nu objects in total respectively

(that is, ns = nt+nu, nt =
∑
g

ntg, nu =
∑
k

nug, ns =
∑
k

nsg)

then we are maximizing

is−
nt

ns
it−

nu

ns
iu

where is, it, iu are the corressponding impurities; for instance,
with entropy as impurity measure this is equal to

−
∑
g

(
nsg

ns
log
nsg

ns

)
+
nt

ns

∑
g

(
ntg

nt
log
ntg

nt

)
+
nu

ns

∑
g

(
nug

nu
log
nug

nu

)
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Average impurity decrease in R

Entropy:

> ent = function(x) sum(-x*log(x+0.0000001))

> ent(c(1/2,1/2))-8/24*ent(c(7/8,1/8))-16/24*ent(c(5/16,11/16))

[1] 0.1534995

> ent(c(1/2,1/2))-5/24*ent(c(0/5,5/5))-19/24*ent(c(12/19,5/19))

[1] 0.1852558

Gini:

> gini = function(x) 1-sum(x*x)

> gini(c(1/2,1/2))-8/24*gini(c(7/8,1/8))-16/24*gini(c(5/16,11/16))

[1] 0.140625

> gini(c(1/2,1/2))-5/24*gini(c(0/5,5/5))-19/24*gini(c(12/19,5/19))

[1] 0.07894737
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Owners of riding mowers: a coarse tree

...also called a stump.

> library(rpart)

> mowtree=rpart(factor(riding)~income+lot,data=mowers)

> plot(mowtree,margin=0.1)

> text(mowtree,use.n=TRUE,cex=1.3)
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Owners of riding mowers: another coarse tree

> library(tree)

> mowtree=tree(factor(riding)~income+lot,data=mowers,

+ control=tree.control(nobs=nrow(mowers),minsize=24),split="deviance")

> plot(mowtree)

> text(mowtree,cex=2)
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Criteria for splitting II: likelihood and deviance

Thinking in likelihood terms, the likelihood of the tree is∏
i

∏
k

p
nig
ig

where i runs over leaves, the terminal nodes, and k over classes

Likelihood is still maximized after taking logs

Reversing the sign results in minimization instead of maximization

This leads to the deviance

D =
∑
i

Di =
∑
i

(
−2

∑
g

nig logpig
)

which is the sum, over the leaves, of deviances

Di = −2
∑
g

nig logpig

(factor 2 is there just for traditional reasons; obviously it does not
change anything)

168



The reduction in deviance

If node s is split into nodes t and u

we observe the reduction in the deviance

Ds−Dt−Du

= −2
∑
g

nsg logpsg+ 2
∑
g

ntg logptg+ 2
∑
g

nug logpug

= −2
∑
g

(ntg+nug) logpsg+2
∑
g

ntg logptg+2
∑
g

nug logpug

= 2
∑
k

(
ntg log

ptg

psg
+nug log

pug

psg

)
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It is equivalent to entropy as impurity

After replacing the probabilities by their estimates

p̂tg =
ntg

nt
; p̂ug =

nug

nu
; p̂sg =

ntg+nug
nt+nu

=
nsg

ns
;

where nt =
∑
g

ntg, nu =
∑
g

nug, ns =
∑
g

nsg,

we obtain that the reduction in deviance is equal to

2
∑
g

(
ntg logntg+nug lognug−nsg lognsg

+ns logns−nu lognu−nt lognt
)

= 2
∑
g

(
ntg log

ntg

nt
+nug log

nug

nu
−nsg log

nsg

ns

)

= 2ns

nt
ns

∑
g

(
ntg

nt
log
ntg

nt

)
+
nu

ns

∑
g

(
nug

nu
log
nug

nu

)
−

∑
g

(
nsg

ns
log
nsg

ns

)
which shows its maximization is equivalent to the maximization of
the average impurity decrease for the entropy impurity.
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Owners of riding mowers: fine tree

> mowtr=rpart(factor(riding)~income+lot,data=mowers,minsplit=1,cp=0.00001)

> plot(mowtr,branch=0.5,margin=0.1)

> text(mowtr,use.n=TRUE)
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Criteria for pruning

The criterion for splitting, R, often leads to a maximal tree, the
tree with the maximal number of splits. This is not always optimal,
and in particular, it can overfit. Thus we usually reduce the tree
by cutting of branches - pruning.

Given α > 0, there is always a tree (with minimal size) minimizing

Rα = R+α size

The trees minimizing this for various α are nested, so pruning can
indeed lead us to one of those - if we know what α we would like.
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The selection of α

One possibility is to try some version of cross-validation: 10-
fold cross-validation divides data randomly to 10 equally-sized
groups, evaluates the quality of prediction on each group (the rule
determined from the remaining 9 groups), and then computes the
aggregate error rate, which we can plot against α and see.

We would like to select α that minimizes the cross-validated error,
but this often leads to the maximal tree. Then, another rule may
be handy, the 1-SE rule: it selects the α which yields the largest
error within 1 standard deviation of the minimal one.

In the library(rpart) implementation, cp is α divided by R0. The
dashed line on the complexity plot indicates the distance of one
standard deviation from the minimal error.

Also, in this implementation, cp shows somewhat differently in the
printout and in the plot. While the printout shows the minimal
cp for which we start to get a particular tree, the plot shows a
geometric mean of two such consecutive α
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Complexity printout

> printcp(mowtr)

...

CP nsplit rel error xerror xstd

1 0.500000 0 1.00000 1.33333 0.19245

2 0.166667 1 0.50000 1.08333 0.20341

3 0.083333 3 0.16667 0.83333 0.20127

4 0.000010 5 0.00000 0.83333 0.20127

> mowtr$cptable

CP nsplit rel error xerror xstd

1 0.50000000 0 1.0000000 1.3333333 0.1924501

2 0.16666667 1 0.5000000 1.0833333 0.2034141

3 0.08333333 3 0.1666667 0.8333333 0.2012691

4 0.00001000 5 0.0000000 0.8333333 0.2012691

> plotcp(mowtr)

The crossvalidation table was constructed already when creating
the mowtr object - so given the randomness involved in the default
10-fold crossvalidation, to reproduce the result we need to set
random seed generator before running rpart()
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And the complexity plot
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Fine aspects of cp’s shown
> cps=mowtr$cptable[,1]

> cps

1 2 3 4

0.50000000 0.16666667 0.08333333 0.00001000

> sqrt(cps * c(Inf, cps[-length(cps)]))

1 2 3 4

Inf 0.2886751346 0.1178511302 0.0009128709

> mowtree=rpart(factor(riding)~income+lot,data=mowers,

+ minsplit=1,cp=0.12)

> plot(mowtree,branch=0,margin=0.1)

> text(mowtree,use.n=TRUE)

> mowtree=rpart(factor(riding)~income+lot,data=mowers,

+ minsplit=1,cp=0.08333333)

...

> mowtree=rpart(factor(riding)~income+lot,data=mowers,

+ minsplit=1,cp=0.08333333333333)

...

> mowtree=rpart(factor(riding)~income+lot,data=mowers,

+ minsplit=1,cp=0.08333333333333333333)

...

176



Owners of riding mowers: pruned tree
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Note, however, for different cp
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Obviously, cp from the “middle of the range” is good even
rounded...
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An alternative package now

> mowtree=tree(factor(riding)~income+lot,data=Mowers,

+ control=tree.control(nobs=nrow(Mowers),minsize=1,mindev=0),

+ split="gini") ## split="deviance" is actually the default

> plot(mowtree)

> text(mowtree)

> mowcv=cv.tree(mowtree) ## randomness only here

> plot(mowcv)
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Useful?

size
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With some knowledgeable use...

size

m
is
cl
as
s

12
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16
18

1 2 3 4 5 6

   6    2    1    0 -Inf

> mowcv=cv.tree(mowtree,FUN=prune.misclass)

> plot(mowcv,type="b")
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... and with some luck (this would be very rare)

|income < 59.7

lot < 19.8

income < 84.75

0
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> plot(prune.misclass(mowtree,best=4))

> text(prune.misclass(mowtree,best=4))
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One can fine tune here: choose K- (M−)

size
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   6    2    1    0 -Inf

> mowcv=cv.tree(mowtree,FUN=prune.misclass,K=4)

> plot(mowcv,type="b")
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And choose folds (eliminate randomness)

size
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   6    2    1    0 -Inf

> mowcv=cv.tree(mowtree,rep(1:4,rep(6,4)),FUN=prune.misclass)

> ## seems like it knows K then, and ignores it even if wrong

> plot(mowcv,type="b")
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Even leave-one-out crossvalidation possible...

size
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   6    2    1    0 -Inf

> mowcv=cv.tree(mowtree,1:24,FUN=prune.misclass)

> plot(mowcv,type="b")
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... although probably not very useful

|income < 59.7

0 1

> plot(prune.misclass(mowtree,best=2))

> text(prune.misclass(mowtree,best=2))
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Bank data: complexity plot...
> bankfull=rpart(factor(k)~.,data=bank,minsplit=1)

> plotcp(bankfull)
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...and printout

> printcp(bankfull)

Classification tree:

rpart(formula = factor(k) ~ ., data = Bank, minsplit = 1)

Variables actually used in tree construction:

[1] v1 v3 v4

Root node error: 21/46 = 0.45652

n= 46

CP nsplit rel error xerror xstd

1 0.761905 0 1.000000 1.00000 0.16087

2 0.095238 1 0.238095 0.57143 0.14182

3 0.047619 2 0.142857 0.38095 0.12242

4 0.023810 3 0.095238 0.47619 0.13321

5 0.010000 7 0.000000 0.47619 0.13321
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Bank data: the resulting tree

> banktree=prune(bankfull,cp=0.067)

> plot(banktree,margin=0.1)

> text(banktree)
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1

189



Bank data: Sammon map and tree predictor
> plot(bsam[[1]],pch=15*bank$k)

> wrong=predict(banktree,type=’class’) != bank$k

> points(bsam[[1]][wrong,],pch=4,cex=2)
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Bank data: better plot here
...valid in this particular situation; also some beautifications.

> plot(bank$v1,bank$v3,pch=15*bank$k+1,type=’n’)

> polygon(c(-0.7,0.13,0.13,0.7,0.7,-0.7),c(1.74,1.74,0,0,6,6),col=’gray’)

> points(bank$v1,bank$v3,pch=15*bank$k+1)

> abline(h=1.74,lty=3)

> abline(v=0.13,lty=3)
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Beware, however

> bankfull=rpart(factor(k)~.,data=bank,minsplit=1)

> plotcp(bankfull)
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At least the final tree seems to remain...

> bankfull=rpart(factor(k)~.,data=bank,minsplit=1)

> plotcp(bankfull)
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...most of the time...

> bankfull=rpart(factor(k)~.,data=bank,minsplit=1)

> plotcp(bankfull)
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...maybe...

> bankfull=rpart(factor(k)~.,data=bank,minsplit=1)

> plotcp(bankfull)
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So, it depends only on chance?

Well... then perhaps this:

> xer=rep(0,5)

> xvr=rep(0,5)

> for (nn in (1:20)) {

+ bktr=rpart(factor(k)~.,data=Bank,minsplit=1)

+ xer=xer+bktr$cptable[,4]

+ xvr=xvr+bktr$cptable[,5]^2

+ }

> bktr$cptable[,5]=sqrt(xvr/20)

> bktr$cptable[,4]=xer/20

> plotcp(bktr,minline=FALSE)

> bktr=rpart(factor(k)~.,data=Bank,minsplit=1,cp=0.034)

> plot(bktr,margin=0.1)

> text(bktr,use.n=TRUE)
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The result
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Let us try it on cv.tree and riding mowers

> xcv=rep(0,5)

> for (nn in (1:20)) {

+ mowcv=cv.tree(mowtr,FUN=prune.misclass)

+ xcv=xcv+mowcv$dev

+ }

> mowcv$dev=xcv/20

> plot(mowcv,type="b")

> plot(prune.misclass(mowtr,best=5))

> text(prune.misclass(mowtr,best=5))
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Seems like it works
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Conclusions

As far as classification trees are concerned:

- they are very interpretable

- have very good predictive power

- however, they are somewhat subjective

- not good for handling linear combinations

- but, on the other hand, they are very good for missing data

this is in fact their very special virtue: they are capable of
producing so-called surrogate splits
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Appendix
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Classification via recycling
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Methods recycling other methods

An important (and perhaps the most important) class of
classification methods are those that use or combine other
methods: “recycling”, “meta-”, or “committee” methods

Prominent examples: bagging, boosting

203



Committee methods

We have seen that instability of algorithms can be mitigated by
their averaging. This is done in a straightforward manner: the j-th
classifier classifies given x into class yj. “Committee” than decides
by the majority vote: that class is chosen as a final results which
has got maximal number of the yj’s

When there are only two classes, we can have one of them coded
by 0 and another by 0; then the majority vote is about whether
the average

1

n

J∑
j=1

yj is > or 6 than 0.5

(As usual, = does not matter from the theoretical point of view)

Here, “different classifiers” can be different methods, different runs
of the same numerically unstable algorithm on the same data, runs
of the same or different algorithms on different data - and regarding
the last possibility, “different” data created by recycling the same
dataset
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Bootstrap AGGregation or bagging

The J “different” datasets are generated from the n original
datapoints (xi,yi) by “bootstrap sampling”: n new datapoints are
sampled from the original ones, with replacement and the same
probability of being sampled, for every j = 1, 2, . . . , J.

Each of these new datasets creates a classifier that eventually
classifies given x into class yi. The combined classifier than takes
the majority vote. (The voting proportions may serve as estimates
of posterior probabilities)

In each of the samples, some of the (xi,yi) can occur once, some
several times, and some (with probability about 0.37) not occur at
all. The later are called “out of bag” for the j-th sample and they
function as a test sample for the j-th case.

More specifically, for each (xi,yi) we take only those samples out
of J where (xi,yi) is “out of bag”, that is, when it is not sampled.
We classify xi based on the classifiers ran only on those samples,
using the majority rule. Then we look on the average number of
misclassifications over all xI, i = 1, 2, . . . ,n
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Recycling classification trees

When doing bagging with classification trees, it is not feasible to
involve subjective input for all J samples; instead we construct the
tree automatically - no pruning, mostly all the way down.

A further elaboration of this technology are random forests:
randomization is applied not only in resampling, but also in the
construction of the tree. Typically, at each stage of finding the
split, a random sample of variables is taken and the optimal (Gini
or entropy) split is determined based on those

> library(randomForest)

randomForest 4.6-14

Type rfNews() to see new features/changes/bug fixes.

> set.seed(321)

> mow.rf=randomForest(factor(riding)~income+lot,data=mowers)

> predict(mow.rf,newdata=mowers)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Levels: 0 1

> predict(mow.rf)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0

Levels: 0 1
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Bagging (50) mowers
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Apparent error rate is 0, but the “out-of-bag” estimate is 3/24 (X)
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Bagging (50) mowers repeated
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Apparent error rate again 0, the “out-of-bag” estimate is 4/24 (X)
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Random forest with 500 mowers
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Apparent error rate 0; “out-of-bag” misclassifications shown by X
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Random forest with 500 mowers once again
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Apparent error rate 0; “out-of-bag” misclassifications shown by X
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Boosting

An algorithm that takes a classification method and repeatedly
applies it to the reweighted data points - with the objective to get
improved classification

1. Apply a classifier, store the result.

2. Reweight items: the misclassified ones receive higher weight

3. Go to point 1 and repeat.

After stopping:

4. Combine all the results obtained on the road.
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AdaBoost.M1

Suppose that the two classes are coded −1 and +1.

1. Initialize weights to wi = 1/n (start with equal weights)

2. For k = 1 to K

(a) Classify training data with weights wi; predictions are Gk(x)

(b) Ii = 1, if i-th item not classified correctly, and 0 if yes

(c) ek =

∑n
i=1wiIi∑n
i=1wi

(this is the quantity indicating how well the

items are classified for this particular run

– it depends on their weights, but otherwise it is independent of i)

(d) let αk = log
1 − ek
ek

set the new i-th weight to be wieαkIi

that is, if the item is classified correctly

no change of weight; if not, then the new weight is
1 − ek
ek

wi;

greater than the old one if less than the half (in total weights)
items is misclassified

3. After the loop, the final prediction is: sign
(∑K

k=1αkGk(x)
)
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A realization for riding mowers data

> boowei=rep(1/nrow(Mowers),nrow(Mowers))

> boocla=vector("list",33)

> booalp=rep(0,33)

> for (k in 1:33)

+ {

+ boocla[[k]] = rpart(factor(riding)~income+lot,

+ data=Mowers,weights=boowei,maxdepth=1)

+ boopr = predict(boocla[[k]])

+ boomis = (Mowers$riding != as.numeric(boopr[,2] > boopr[,1]))

+ booerr = crossprod(boowei,boomis)/sum(boowei)

+ booalp[k] = log((1-booerr)/booerr)

+ boowei = boowei*exp(booalp[k]*boomis)

+ print(k)

+ }
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The classifier used: stumps

|income< 59.7

0 1

|lot< 19.8

0 1

|income< 78

0 1

|lot< 18

0 1

|income< 59.7

0 1

|lot< 20.6

0 1

(trees with only one split)
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The result
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“The best off-shelf classifier (boosting with trees)”

Catch: do you know when to stop? (= hidden tuning parameter)

215



Finally, bank data (as usual)

> boowei=rep(1/nrow(Bank),nrow(Bank))

> boocla=vector("list",15)

> booalp=rep(0,15)

> for (k in 1:15)

+ {

+ boocla[[k]] = rpart(factor(k)~.,data=Bank,

+ weights=boowei,maxdepth=1)

+ boopr = predict(boocla[[k]],type=’class’)

+ boomis = (Bank$k != boopr)

+ booerr = crossprod(boowei,boomis)/sum(boowei)

+ booalp[k] = log((1-booerr)/booerr)

+ boowei = boowei*exp(booalp[k]*boomis)

+ }

> boocum=rep(0,nrow(Bank))

> for (k in 1:15)

+ {

+ boocum = boocum + booalp[k]*2

+ *(predict(boocla[[k]])[,2] > 0.5)-1

+ }

> wrong=(1+sign(boocum))/2 != Bank$k

> plot(Bank$v1,Bank$v3,pch=15*Bank$k+1)

> points(Bank$v1[wrong],Bank$v3[wrong],pch=4,cex=2)
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Boosting bank data
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Classification via regression revisited:
neural networks
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Neural networks: some principles

A somewhat actual way of specifying nonlinear models is via
superposition of functions - neural networks. The simplest
variation on this theme is the “feed-forward one hidden layer neural
network”

f(x) = ϕ0

(
α+

∑
h

βhϕh

(
αh+

∑
i

βihxi

))
.

As a rule, the “hidden layer activation functions” ϕh are logistic;
the output function ϕ0 is in classification logistic or treshold
(ϕ0(x) = I(x > 0)). (Neural networks may be used also for
usual regression with quantitative response, where ϕ0 may be also
linear.) Estimation (“training”) of α’s and β’s is usually done by
least squares method.
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Expressed graphically

220



Neural networks: some details

The number of layers and hidden units is chosen in advance.
The number of parameters grows quickly, so the main concern
is overfitting: the classification fits very well the training data,
but performs poorly on the next sample. There are techniques
proposed to cope with this; in particular, splitting to training and
validation sample almost a must (leave-one-out cross-validation is
in most cases computationally too expensive).

The algorithmic side is nontrivial; methods often lead to different
local minima, so alternative predictive strategies (averaging) have
to be used.
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Mowers: neural networks
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Mowers: neural networks (?)
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Mowers: averaged neural networks
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Mowers: neural networks (!)
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Reproducibility?
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Mowers: averaged neural networks again
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Final remarks

Neural networks offer a lot of flexibility, but they are not that
transparent regarding their nature.

An objective to find a classifier modeling somewhat human
perception is probably lost.

What remains are serious algorithmic problems.

Nevertheless, who knows...(?)
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Finale: properties of classification methods I

Predictive power: how well the method classifies?

- all methods compete for that, and new ones are introduced
because they (are supposed to) perform better than old ones
- but this does not mean that the old ones are necessarily worse
(LDA, for instance)

Interpretability: can we make some sense out of the rule?

- some methods are really of black box type: neural networks
- but of course, interpretability may be not the most important
virtue

Number of classes capable to handle: many or only two?

- there are multiclass version of linear discriminant analysis and
also of logistic regression (multinomial regression)

227



Properties of classification methods II

Computational difficulty: feasible also for large datasets?

- this changes with time: new algorithms, new hardware
- is there a need to tune parameters (often a hidden feature)?

Special aspects

- handling of missing data
- adaptivity to unequal priors and misclassification costs
- handling of linear combinations
- type of regions (linear boundaries? more fancy?)
- invariance with respect to transformations?
- robustness to outliers?

228


