ZÁKLADY STAVITELSTVÍ

1. Přednáška: Základní pojmy stavební mechaniky

Ing. Tomáš Kadlíček, Ph.D.

POŽADAVKY PRO ÚSPĚŠNÉ SPLNĚNÍ PŘEDMĚTU

UDĚLENÍ ZÁPOČTU:

- Vypracování individuálního domácího úkolu
- > Odevzdání domácího úkolu je podmínkou pro připuštění ke zkoušce

ZKOUŠKA:

- Probraná látka tvoří okruh 150 zkouškových otázek
- Zkouška se bude skládat z 20 náhodně vybraných otázek
- Minimálně 50% odpovědí musí být správně

1. Výpočet reakcí

- 1. Výpočet reakcí
- 2. Výpočet vnitřních sil

- 1. Výpočet reakcí
- 2. Výpočet vnitřních sil
- Výpočet průběhu napětí v nejvíce namáhaném průřezu

(1)
$$\longrightarrow x: R_{2x} + F_x = 0$$

 $\swarrow 1$ $y: R_{2z} \cdot 2 - F_x \cdot 2, 0 = 0$
 $\downarrow z: -R_{1z} - R_{2z} = 0$

- 1. Výpočet reakcí
- 2. Výpočet vnitřních sil
- Výpočet průběhu napětí v nejvíce namáhaném průřezu
 - * Vždy s podrobným výpočtem a vykreslením v měřítku. Ne od ruky!

OBSAH

- STATICKÁ TAHOVÁ ZKOUŠKA OCELI
- ROZŠÍŘENÝ HOOKŮV ZÁKON
- TENZORY NAPĚTÍ A DEFORMACE
- MATERIÁLOVÁ MATICE TUHOSTI
- IZOTROPNÍ A ANIZOTROPNÍ MATERIÁL

- STATICKÁ TAHOVÁ ZKOUŠKA OCELI
- ROZŠÍŘENÝ HOOKŮV ZÁKON
- TENZORY NAPĚTÍ A DEFORMACE
- MATERIÁLOVÁ MATICE TUHOSTI
- IZOTROPNÍ A ANIZOTROPNÍ MATERIÁL

- Provádí se na zkušebních vzorcích pro ověření mechanických vlastností materiálu
- Ocel se přednostně testuje na tyčinkách s kruhovým průřezem a délce $l_0 = 10d_0$

- Provádí se na zkušebních vzorcích pro ověření mechanických vlastností materiálu
- Ocel se přednostně testuje na tyčinkách s kruhovým průřezem a délce $l_0 = 10d_0$

Po ukotvení tyčinky do čelistí trhacího zkušebního stroje se vzorek osově protahuje <u>Hlava tyčinky</u>
 <u>Čelisti trhacího stroje</u>

• Během zkoušky se zaznamenává délka tyčinky \overline{l}

- a velikost působící osové síly F
- Průběh tahové zkoušky se zpracovává do tzv. "pracovního diagramu"

- Provádí se na zkušebních vzorcích pro ověření mechanických vlastností materiálu
- Ocel se přednostně testuje na tyčinkách s kruhovým průřezem a délce $l_0 = 10d_0$

Po ukotvení tyčinky do čelistí trhacího zkušebního stroje se vzorek osově protahuje Čelisti trhacího stroje Hlava tyčinky

- a velikost působící osové síly F
- Průběh tahové zkoušky se zpracovává do tzv. "pracovního diagramu"

Pracovní diagram (měkká uhlíková ocel)

$$\begin{split} &\sigma_a - \text{osové (axiální) napětí} \\ &\sigma_a = \frac{F}{A} [\text{Pa}] \\ &\varepsilon_a - \text{poměrné prodloužení / axiální deformace} \\ &\varepsilon_a = \frac{\overline{l} - l_0}{l_0} = \frac{\Delta l}{l_0} [-] \end{split}$$

V průběhu tahové zkoušky dochází k těmto mezím:

V průběhu tahové zkoušky dochází k těmto mezím:

 f_p - mez úměrnosti

Deformace ε je lineárně úměrná napětí σ Tato fáze je popsána **Hookových zákonem**

 $\sigma = E\varepsilon$ (lineární pružnost)

E – Youngův modul pružnosti

Pracovní diagram (měkká uhlíková ocel)

V průběhu tahové zkoušky dochází k těmto mezím:

f_p - mez úměrnosti

Deformace ε je lineárně úměrná napětí σ Tato fáze je popsána Hookových zákonem

 $\sigma = E \varepsilon$ (lineární pružnost)

E – Youngův modul pružnosti

f_e - mez pružnosti

Materiál se až do této meze chová pružně. Po překonání této meze se začínají rozvíjet plastické (nevratné) deformace.

Pracovní diagram (měkká uhlíková ocel)

V průběhu tahové zkoušky dochází k těmto mezím:

f_p - mez úměrnosti

Deformace ε je lineárně úměrná napětí σ Tato fáze je popsána **Hookových zákonem**

 $\sigma = E\varepsilon$ (lineární pružnost)

E – Youngův modul pružnosti

f_e - mez pružnosti

Materiál se až do této meze chová pružně. Po překonání této meze se začínají rozvíjet plastické (nevratné) deformace.

f_y - mez kluzu

Po dosažení této meze dochází k velkým plastickým změnám. Pokud je tato mez doprovázena poklesem napětí, má materiál výraznou mez kluzu. Mez kluzu se ve stavebních normách často používá jako maximální přípustné namáhání.

Pracovní diagram (měkká uhlíková ocel)

V průběhu tahové zkoušky dochází k těmto mezím:

f_p - mez úměrnosti

Deformace ε je lineárně úměrná napětí σ Tato fáze je popsána **Hookových zákonem**

 $\sigma = E \varepsilon$ (lineární pružnost)

E – Youngův modul pružnosti

f_e - mez pružnosti

Materiál se až do této meze chová pružně. Po překonání této meze se začínají rozvíjet plastické (nevratné) deformace.

f_y - mez kluzu

Po dosažení této meze dochází k velkým plastickým změnám. Pokud je tato mez doprovázena poklesem napětí, má materiál výraznou mez kluzu. Mez kluzu se ve stavebních normách často používá jako maximální přípustné namáhání.

Pracovní diagram (měkká uhlíková ocel)

V průběhu tahové zkoušky dochází k těmto mezím:

f_p - mez úměrnosti

Deformace ε je lineárně úměrná napětí σ Tato fáze je popsána Hookových zákonem

 $\sigma = E\varepsilon$ (lineární pružnost)

E – Youngův modul pružnosti

f_e - mez pružnosti

Materiál se až do této meze chová pružně. Po překonání této meze se začínají rozvíjet plastické (nevratné) deformace.

f_y - mez kluzu

Po dosažení této meze dochází k velkým plastickým změnám. Pokud je tato mez doprovázena poklesem napětí, má materiál výraznou mez kluzu. Mez kluzu se ve stavebních normách často používá jako maximální přípustné namáhání.

f_p - mez pevnosti

Při této mezi dochází v tahové tyči ke vzniku "krčku" v oblasti materiálové vady.

V průběhu tahové zkoušky dochází k těmto mezím:

f_p - mez úměrnosti

Deformace ε je lineárně úměrná napětí σ Tato fáze je popsána **Hookových zákonem**

 $\sigma = E\varepsilon$ (lineární pružnost)

E – Youngův modul pružnosti

f_e - mez pružnosti

Materiál se až do této meze chová pružně. Po překonání této meze se začínají rozvíjet plastické (nevratné) deformace.

f_y - mez kluzu

Po dosažení této meze dochází k velkým plastickým změnám. Pokud je tato mez doprovázena poklesem napětí, má materiál výraznou mez kluzu. Mez kluzu se ve stavebních normách často používá jako maximální přípustné namáhání.

f_p - mez pevnosti

Při této mezi dochází v tahové tyči ke vzniku "krčku" v oblasti materiálové vady.

D - porušení

Dochází k přetržení zkušební tyčinky

Pracovní diagram oceli je smluvní, jelikož se **inženýrské (konvenční) napětí** σ určuje z počátečního průměru tyčinky d_0

$$\sigma_a = \frac{4F}{\pi d_0^2}$$

Nedostatkem **poměrného prodloužení (deformace)** ε je její závislost na počáteční délce l_0

$$\varepsilon_a = \frac{\bar{l} - l_0}{l_0} = \frac{\Delta l}{l_0}$$

Pracovní diagram (měkká uhlíková ocel)

Pracovní diagram oceli je smluvní, jelikož se **inženýrské (konvenční) napětí** σ určuje z počátečního průměru tyčinky d_0

$$\sigma_a = \frac{4F}{\pi d_0^2}$$

Nedostatkem **poměrného prodloužení (deformace)** ε je její závislost na počáteční délce l_0

$$\varepsilon_a = \frac{l - l_0}{l_0} = \frac{\Delta l}{l_0}$$

Skutečné napětí $\bar{\sigma}_a$, ke kterému v tyčince dochází, se určí z jejího skutečného průměru \bar{d}

$$\bar{\sigma}_a = \frac{4F}{\pi \bar{d}^2}$$

Skutečná deformace $\bar{\varepsilon}_a$ tyčinky se určí integrací po její délce

$$d\bar{\varepsilon}_a = \int_{l_0}^{l} \frac{dl}{l_0} = \ln(1 + \varepsilon_a)$$

Pracovní diagram (měkká uhlíková ocel)

Pracovní diagram oceli je smluvní, jelikož se **inženýrské (konvenční) napětí** σ určuje z počátečního průměru tyčinky d_0

$$\sigma_a = \frac{4F}{\pi d_0^2}$$

Nedostatkem **poměrného prodloužení (deformace)** ε je její závislost na počáteční délce l_0

$$\varepsilon_a = \frac{\overline{l} - l_0}{l_0} = \frac{\Delta l}{l_0}$$

Skutečné napětí $\bar{\sigma}_a$, ke kterému v tyčince dochází, se určí z jejího skutečného průměru \bar{d}

$$\bar{\sigma}_a = \frac{4F}{\pi \bar{d}^2}$$

Skutečná deformace $\bar{\varepsilon}_a$ tyčinky se určí integrací po její délce

$$d\bar{\varepsilon}_a = \int_{l_0}^{l} \frac{dl}{l_0} = \ln(1 + \varepsilon_a)$$

Pracovní diagram (měkká uhlíková ocel)

Pro malé deformace (cca $\varepsilon_a = 0.2\%$) lze považovat inženýrské deformace za vhodnou aproximaci, a tedy platí $\bar{\varepsilon}_a \approx \varepsilon_a$.

Pracovní diagram (měkká uhlíková ocel)

Při odtížení lze v pracovním diagramu rozlišit nevratné/plastické deformace ε_{pl} a vratné/elastické deformace ε_{el} .

Pracovní diagram (měkká uhlíková ocel)

Při odtížení lze v pracovním diagramu rozlišit nevratné/plastické deformace ε_{pl} a vratné/elastické deformace ε_{el} .

Idealizovaný pracovní diagram

Pro ověřování pevnosti materiálu jako je ocel a beton, se běžně používá idealizovaný pracovní diagram. Pro ocel se používá mez plasticity odpovídající mezi kluzu oceli f_y .

Pracovní diagram (měkká uhlíková ocel)

Při odtížení lze v pracovním diagramu rozlišit nevratné/plastické deformace ε_{pl} a vratné/elastické deformace ε_{el} .

Pracovní diagram (smluvní mez kluzu)

Pro materiály, které nevykazují **výraznou mez kluzu** se používá jejich smluvní hodnota, tzv. **smluvní mez kluzu**. Pro stavební ocel se používá hodnota 0,2% značená jako f_{02}

Pracovní diagram (měkká uhlíková ocel)

Při odtížení lze v pracovním diagramu rozlišit nevratné/plastické deformace ε_{pl} a vratné/elastické deformace ε_{el} .

Pracovní diagram (tah a tlak)

Pro malé deformace, je průběh pracovního diagramu v tlaku a tahu shodný. Ocel má tedy v tlaku a tahu shodnou mez kluzu f_y . Pro větší deformace se již diagram pro tlak a tah liší.

- STATICKÁ TAHOVÁ ZKOUŠKA OCELI
- ROZŠÍŘENÝ HOOKŮV ZÁKON
- TENZORY NAPĚTÍ A DEFORMACE
- MATERIÁLOVÁ MATICE TUHOSTI
- IZOTROPNÍ A ANIZOTROPNÍ MATERIÁL

Základní forma Hookova zákona pro jednoosou napjatost popisuje lineární elastický vztah mezi deformací a napětím: σ_{xx} - napětí ve směru x

 E_x^{-} Youngův modul pružnosti ve směru x

 $\sigma_{xx} = E_x \varepsilon_{xx}$

 ε_{xx} - deformace ve směru x

Základní forma Hookova zákona pro jednoosou napjatost popisuje lineární elastický vztah mezi deformací a napětím: σ_{xx} - napětí ve směru x

$$\sigma_{xx} = E_x \varepsilon_{xx}$$

 E_x - Youngův modul pružnosti ve směru x

$$\varepsilon_{xx}$$
- deformace ve směru x

Při osovém protažení nebo stlačení dochází nejen k axiální deformaci ε_{xx} , ale rovněž k příčné deformaci ε_{yy} , popřípadě ε_{zz} .

Základní forma Hookova zákona pro jednoosou napjatost popisuje lineární elastický vztah mezi deformací a napětím: σ_{xx} - napětí ve směru x

$$\sigma_{xx} = E_x \varepsilon_{xx}$$

 E_x - Youngův modul pružnosti ve směru x

$$arepsilon_{\chi\chi}$$
- deformace ve směru x

Při osovém protažení nebo stlačení dochází nejen k axiální deformaci ε_{xx} , ale rovněž k příčné deformaci ε_{yy} , popřípadě ε_{zz} .

Základní forma Hookova zákona pro jednoosou napjatost popisuje lineární elastický vztah mezi deformací a napětím: σ_{xx} - napětí ve směru x

$$\sigma_{xx} = E_x \varepsilon_{xx}$$

 E_x - Youngův modul pružnosti ve směru x

$$\varepsilon_{xx}$$
- deformace ve směru x

Při osovém protažení nebo stlačení dochází nejen k axiální deformaci ε_{xx} , ale rovněž k příčné deformaci ε_{yy} , popřípadě ε_{zz} .

Základní forma Hookova zákona pro jednoosou napjatost popisuje lineární elastický vztah mezi deformací a napětím: σ_{xx} - napětí ve směru x

$$\sigma_{xx} = E_x \varepsilon_{xx}$$

 E_x - Youngův modul pružnosti ve směru x

$$\varepsilon_{xx}$$
- deformace ve směru x

Při osovém protažení nebo stlačení dochází nejen k axiální deformaci ε_{xx} , ale rovněž k příčné deformaci ε_{yy} , popřípadě ε_{zz} .

$$\varepsilon_{xx} = \frac{\Delta l}{l}, \qquad \Delta l = l - l_0$$

 Λh

Vztah mezi jednotlivými složkami deformace je dán součinitelem příčné kontrakce v, též známým jako **Poissonovo číslo**. Vztah mezi jednotlivými složkami deformace je pak dán vztahy:

Poissonovo číslo se pohybuje v rozmezích (0; 0,5)

Z Hookova zákona pro jednoosou napjatost vyjádříme:

$$\sigma = E\varepsilon \Rightarrow \qquad \varepsilon_{xx} = \frac{\sigma_{xx}}{E_x},$$

Z Hookova zákona pro jednoosou napjatost vyjádříme:

$$\sigma = E\varepsilon \Rightarrow \qquad \varepsilon_{xx} = \frac{\sigma_{xx}}{E_x},$$

a s použitím Poissonova čísla dostaneme:

 $\varepsilon_{yy} = -\nu_{xy}\varepsilon_{xx}, \qquad \qquad \varepsilon_{zz} = -\nu_{xz}\varepsilon_{xx}$

Z Hookova zákona pro jednoosou napjatost vyjádříme:

$$\sigma = E\varepsilon \Rightarrow \qquad \varepsilon_{xx} = \frac{\sigma_{xx}}{E_x},$$

a s použitím Poissonova čísla dostaneme:

$$\varepsilon_{yy} = -\frac{v_{xy}\sigma_{xx}}{E_x}$$
, $\varepsilon_{zz} = -\frac{v_{xz}\sigma_{xx}}{E_x}$

Z Hookova zákona pro jednoosou napjatost vyjádříme:

$$\sigma = E\varepsilon \Rightarrow \qquad \varepsilon_{xx} = \frac{\sigma_{xx}}{E_x},$$

a s použitím Poissonova čísla dostaneme:

$$\varepsilon_{yy} = -\frac{v_{xy}\sigma_{xx}}{E_x}, \qquad \qquad \varepsilon_{zz} = -\frac{v_{xz}\sigma_{xx}}{E_x}$$

Záměnou indexů x, y a z získáme

$$\varepsilon_{yy} = \frac{\sigma_{yy}}{E_y}$$

а

Z Hookova zákona pro jednoosou napjatost vyjádříme:

$$\sigma = E\varepsilon \Rightarrow \qquad \varepsilon_{xx} = \frac{\sigma_{xx}}{E_x},$$

a s použitím Poissonova čísla dostaneme:

$$\varepsilon_{yy} = -\frac{v_{xy}\sigma_{xx}}{E_x}, \qquad \qquad \varepsilon_{zz} = -\frac{v_{xz}\sigma_{xx}}{E_x}$$

Záměnou indexů x, y a z získáme

$$\varepsilon_{yy} = \frac{\sigma_{yy}}{E_y}, \varepsilon_{xx} = -\frac{\nu_{xy}\sigma_{yy}}{E_y}, \varepsilon_{zz} = -\frac{\nu_{zy}\sigma_{yy}}{E_y}$$
 a

Z Hookova zákona pro jednoosou napjatost vyjádříme:

$$\sigma = E\varepsilon \Rightarrow \qquad \varepsilon_{xx} = \frac{\sigma_{xx}}{E_x},$$

a s použitím Poissonova čísla dostaneme:

$$\varepsilon_{yy} = -\frac{v_{xy}\sigma_{xx}}{E_x}$$
, $\varepsilon_{zz} = -\frac{v_{xz}\sigma_{xx}}{E_x}$

Záměnou indexů x, y a z získáme

$$\varepsilon_{yy} = \frac{\sigma_{yy}}{E_y}, \varepsilon_{xx} = -\frac{\nu_{xy}\sigma_{yy}}{E_y}, \varepsilon_{zz} = -\frac{\nu_{zy}\sigma_{yy}}{E_y}$$
 a $\varepsilon_{zz} = \frac{\sigma_{zz}}{E_z}, \varepsilon_{xx} = -\frac{\nu_{zx}\sigma_{zz}}{E_z}, \varepsilon_{yy} = -\frac{\nu_{zy}\sigma_{zz}}{E_z}$

$$\varepsilon_{xx} = \varepsilon_{xx} - \nu_{yx}\varepsilon_{yy} - \nu_{zx}\varepsilon_{zz}$$

Z Hookova zákona pro jednoosou napjatost vyjádříme:

$$\sigma = E\varepsilon \Rightarrow \qquad \varepsilon_{xx} = \frac{\sigma_{xx}}{E_x},$$

a s použitím Poissonova čísla dostaneme:

$$\varepsilon_{yy} = -\frac{v_{xy}\sigma_{xx}}{E_x}$$
, $\varepsilon_{zz} = -\frac{v_{xz}\sigma_{xx}}{E_x}$

Záměnou indexů x, y a z získáme

$$\varepsilon_{yy} = \frac{\sigma_{yy}}{E_y}, \varepsilon_{xx} = -\frac{\nu_{xy}\sigma_{yy}}{E_y}, \varepsilon_{zz} = -\frac{\nu_{zy}\sigma_{yy}}{E_y}$$
 a $\varepsilon_{zz} = \frac{\sigma_{zz}}{E_z}, \varepsilon_{xx} = -\frac{\nu_{zx}\sigma_{zz}}{E_z}, \varepsilon_{yy} = -\frac{\nu_{zy}\sigma_{zz}}{E_z}$

$$\varepsilon_{xx} = \frac{\sigma_{xx}}{E_x} - \frac{\nu_{yx}\sigma_{yy}}{E_y} - \frac{\nu_{zx}\sigma_{zz}}{E_z}$$

Z Hookova zákona pro jednoosou napjatost vyjádříme:

$$\sigma = E\varepsilon \Rightarrow \qquad \varepsilon_{xx} = \frac{\sigma_{xx}}{E_x},$$

a s použitím Poissonova čísla dostaneme:

$$\varepsilon_{yy} = -\frac{\nu_{xy}\sigma_{xx}}{E_x}$$
, $\varepsilon_{zz} = -\frac{\nu_{xz}\sigma_{xx}}{E_x}$

Záměnou indexů x, y a z získáme

$$\varepsilon_{yy} = \frac{\sigma_{yy}}{E_y}, \varepsilon_{xx} = -\frac{\nu_{xy}\sigma_{yy}}{E_y}, \varepsilon_{zz} = -\frac{\nu_{zy}\sigma_{yy}}{E_y} \quad \text{a} \quad \varepsilon_{zz} = \frac{\sigma_{zz}}{E_z}, \varepsilon_{xx} = -\frac{\nu_{zx}\sigma_{zz}}{E_z}, \varepsilon_{yy} = -\frac{\nu_{zy}\sigma_{zz}}{E_z}$$

$$\varepsilon_{xx} = \frac{\sigma_{xx}}{E_x} - \frac{\nu_{yx}\sigma_{yy}}{E_y} - \frac{\nu_{zx}\sigma_{zz}}{E_z}$$

Z Hookova zákona pro jednoosou napjatost vyjádříme:

$$\sigma = E\varepsilon \Rightarrow \qquad \varepsilon_{xx} = \frac{\sigma_{xx}}{E_x},$$

a s použitím Poissonova čísla dostaneme:

$$\varepsilon_{yy} = -\frac{\nu_{xy}\sigma_{xx}}{E_x}$$
, $\varepsilon_{zz} = -\frac{\nu_{xz}\sigma_{xx}}{E_x}$

Záměnou indexů x, y a z získáme

 $\varepsilon_{yy} = \frac{\sigma_{yy}}{E_y}, \varepsilon_{xx} = -\frac{\nu_{xy}\sigma_{yy}}{E_y}, \varepsilon_{zz} = -\frac{\nu_{zy}\sigma_{yy}}{E_y}$ a $\varepsilon_{zz} = \frac{\sigma_{zz}}{E_z}, \varepsilon_{xx} = -\frac{\nu_{zx}\sigma_{zz}}{E_z}, \varepsilon_{yy} = -\frac{\nu_{zy}\sigma_{zz}}{E_z}$

$$\varepsilon_{xx} = \frac{\sigma_{xx}}{E_x} - \frac{\nu_{yx}\sigma_{yy}}{E_y} - \frac{\nu_{zx}\sigma_{zz}}{E_z}, \qquad \varepsilon_{yy} = \frac{\sigma_{yy}}{E_y} - \frac{\nu_{xy}\sigma_{xx}}{E_x} - \frac{\nu_{zy}\sigma_{zz}}{E_z}, \qquad \varepsilon_{zz} = \frac{\sigma_{zz}}{E_z} - \frac{\nu_{xz}\sigma_{xx}}{E_x} - \frac{\nu_{yz}\sigma_{yy}}{E_y}$$

Z Hookova zákona pro jednoosou napjatost vyjádříme:

$$\sigma = E\varepsilon \Rightarrow \qquad \varepsilon_{xx} = \frac{\sigma_{xx}}{E_x},$$

a s použitím Poissonova čísla dostaneme:

$$\varepsilon_{yy} = -\frac{\nu_{xy}\sigma_{xx}}{E_x}$$
, $\varepsilon_{zz} = -\frac{\nu_{xz}\sigma_{xx}}{E_x}$

Záměnou indexů x, y a z získáme

 $\varepsilon_{yy} = \frac{\sigma_{yy}}{E_y}, \varepsilon_{xx} = -\frac{\nu_{xy}\sigma_{yy}}{E_y}, \varepsilon_{zz} = -\frac{\nu_{zy}\sigma_{yy}}{E_y}$ a $\varepsilon_{zz} = \frac{\sigma_{zz}}{E_z}, \varepsilon_{xx} = -\frac{\nu_{zx}\sigma_{zz}}{E_z}, \varepsilon_{yy} = -\frac{\nu_{zy}\sigma_{zz}}{E_z}$

$$\varepsilon_{xx} = \frac{\sigma_{xx}}{E_x} - \frac{v_{yx}\sigma_{yy}}{E_y} - \frac{v_{zx}\sigma_{zz}}{E_z}, \qquad \varepsilon_{yy} = \frac{\sigma_{yy}}{E_y} - \frac{v_{xy}\sigma_{xx}}{E_x} - \frac{v_{zy}\sigma_{zz}}{E_z}, \qquad \varepsilon_{zz} = \frac{\sigma_{zz}}{E_z} - \frac{v_{xz}\sigma_{xx}}{E_x} - \frac{v_{yz}\sigma_{yy}}{E_y}$$

a tedy
$$= \left(- \frac{v_{yx}\sigma_{yy}}{E_y} + \frac{v_{zx}\sigma_{zz}}{E_y} \right) \qquad = \left(- \frac{v_{xy}\sigma_{xx}}{E_y} + \frac{v_{zy}\sigma_{zz}}{E_y} \right)$$

$$\sigma_{xx} = E_x \left(\varepsilon_{xx} + \frac{v_{yx}\sigma_{yy}}{E_y} + \frac{v_{zx}\sigma_{zz}}{E_z} \right), \sigma_{yy} = E_y \left(\varepsilon_{yy} + \frac{v_{xy}\sigma_{xx}}{E_x} + \frac{v_{zy}\sigma_{zz}}{E_z} \right),$$

$$\sigma_{zz} = E_z \left(\varepsilon_{zz} + \frac{v_{xz}\sigma_{xx}}{E_x} + \frac{v_{zy}\sigma_{zz}}{E_z} \right)$$

- STATICKÁ TAHOVÁ ZKOUŠKA OCELI
- ROZŠÍŘENÝ HOOKŮV ZÁKON
- TENZORY NAPĚTÍ A DEFORMACE
- MATERIÁLOVÁ MATICE TUHOSTI
- IZOTROPNÍ A ANIZOTROPNÍ MATERIÁL

Složky napětí a deformace lze uskupit do tzv. tenzoru napětí a tenzoru deformace.

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{\chi\chi} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} \qquad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{\chi\chi} & 0 & 0 \\ 0 & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{bmatrix}$$

Složky napětí a deformace lze uskupit do tzv. tenzoru napětí a tenzoru deformace.

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{\chi\chi} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} \qquad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{\chi\chi} & 0 & 0 \\ 0 & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{bmatrix}$$

Pravidlo pro transformaci tenzorů 2. řádu

 t_n – napětí na ploše **n** (ABC), **n** – normálový vektor, σ – tenzor napětí. Vztah mezi t_n a **n** v dané koordinační soustavě dán: $t_n = \sigma \vec{n}$

Složky napětí a deformace lze uskupit do tzv. tenzoru napětí a tenzoru deformace.

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{\chi\chi} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} \qquad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{\chi\chi} & 0 & 0 \\ 0 & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{bmatrix}$$

Pravidlo pro transformaci tenzorů 2. řádu

 t_n – napětí na ploše **n** (ABC), **n** – normálový vektor, σ – tenzor napětí. Vztah mezi t_n a **n** v dané koordinační soustavě dán: $t_n = \sigma \vec{n}$

Složky napětí a deformace lze uskupit do tzv. tenzoru napětí a tenzoru deformace.

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{\chi\chi} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} \qquad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{\chi\chi} & 0 & 0 \\ 0 & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{bmatrix}$$

Pravidlo pro transformaci tenzorů 2. řádu

 t_n – napětí na ploše **n** (ABC), **n** – normálový vektor, σ – tenzor napětí. Vztah mezi t_n a **n** v dané koordinační soustavě dán: $t_n = \sigma \vec{n}$

Složky napětí a deformace lze uskupit do tzv. tenzoru napětí a tenzoru deformace.

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{\chi\chi} & 0 & 0 \\ 0 & \sigma_{\chiy} & 0 \\ 0 & 0 & \sigma_{ZZ} \end{bmatrix} \qquad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{\chi\chi} & 0 & 0 \\ 0 & \varepsilon_{\chiy} & 0 \\ 0 & 0 & \varepsilon_{ZZ} \end{bmatrix}$$

Pravidlo pro transformaci tenzorů 2. řádu

 t_n – napětí na ploše **n** (ABC), **n** – normálový vektor, σ – tenzor napětí. Vztah mezi t_n a **n** v dané koordinační soustavě dán: $t_n = \sigma \vec{n}$

Tenzor napětí:

$$\boldsymbol{\sigma} = \begin{pmatrix} \boldsymbol{t}_{x} \\ \boldsymbol{t}_{y} \\ \boldsymbol{t}_{z} \end{pmatrix} = \begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix}$$

Z

Složky napětí a deformace lze uskupit do tzv. tenzoru napětí a tenzoru deformace.

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{\chi\chi} & 0 & 0 \\ 0 & \sigma_{\chiy} & 0 \\ 0 & 0 & \sigma_{ZZ} \end{bmatrix} \qquad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{\chi\chi} & 0 & 0 \\ 0 & \varepsilon_{\chiy} & 0 \\ 0 & 0 & \varepsilon_{ZZ} \end{bmatrix}$$

Pravidlo pro transformaci tenzorů 2. řádu

 t_n – napětí na ploše **n** (ABC), **n** – normálový vektor, σ – tenzor napětí. Vztah mezi t_n a **n** v dané koordinační soustavě dán: $t_n = \sigma \vec{n}$

Tenzor napětí:

$$\sigma = \begin{pmatrix} t_x \\ t_y \\ t_z \end{pmatrix} = \begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix}$$
Vektor napětí na ploše n

$$t_n = \sigma \vec{n}$$

Složky napětí a deformace lze uskupit do tzv. tenzoru napětí a tenzoru deformace.

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} \qquad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{xx} & 0 & 0 \\ 0 & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{bmatrix}$$

Pravidlo pro transformaci tenzorů 2. řádu

 t_n – napětí na ploše **n** (ABC), **n** – normálový vektor, σ – tenzor napětí. Vztah mezi t_n a **n** v dané koordinační soustavě dán: $t_n = \sigma \vec{n}$

n

Tenzor napětí:

$$\boldsymbol{\sigma} = \begin{pmatrix} \boldsymbol{t}_{x} \\ \boldsymbol{t}_{y} \\ \boldsymbol{t}_{z} \end{pmatrix} = \begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix}$$

Složky napětí a deformace lze uskupit do tzv. tenzoru napětí a tenzoru deformace.

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{\chi\chi} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} \qquad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{\chi\chi} & 0 & 0 \\ 0 & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{bmatrix}$$

Pravidlo pro transformaci tenzorů 2. řádu

 t_n – napětí na ploše **n** (ABC), \vec{n} –normálový vektor, σ – tenzor napětí. Vztah mezi t_n a \vec{n} v dané koordinační soustavě dán: $t_n = \sigma \vec{n}$ Veličiny transformované do koordinační soustavy X' Pomocí transformační matice **T**:

$$t_n' = Tt_n$$

$$\vec{n}' = T\vec{n}$$

$$T_n' = \sigma'\vec{n}'$$

Složky napětí a deformace lze uskupit do tzv. tenzoru napětí a tenzoru deformace.

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{\chi\chi} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} \qquad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{\chi\chi} & 0 & 0 \\ 0 & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{bmatrix}$$

Pravidlo pro transformaci tenzorů 2. řádu

 \mathbf{t}_n – napětí na ploše \mathbf{n} (ABC), $\mathbf{\vec{n}}$ –normálový vektor, $\boldsymbol{\sigma}$ – tenzor napětí. Vztah mezi \mathbf{t}_n a $\mathbf{\vec{n}}$ v dané koordinační soustavě dán: $\mathbf{t}_n = \boldsymbol{\sigma}\mathbf{\vec{n}}$ Veličiny transformované do koordinační soustavy X' Pomocí transformační matice \mathbf{T} :

$$t_n' = Tt_n$$

$$\vec{n}' = T\vec{n}$$

$$T_n' = \sigma'\vec{n}'$$

Postup transformace tenzoru napětí:

$$t_n' = Tt_n$$

$$\sigma'\vec{n}' = T\sigma\vec{n}$$

$$\sigma'T\vec{n} = T\sigma\vec{n}$$

$$\sigma' = T\sigmaT^T$$

$$T^T = T^{-1}$$

Složky napětí a deformace lze uskupit do tzv. tenzoru napětí a tenzoru deformace.

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} \qquad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{xx} & 0 & 0 \\ 0 & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{bmatrix}$$
Pootočením souřadného systému pomocí transformační matice **T** dostaneme
$$\boldsymbol{\sigma}' = \mathbf{T}\boldsymbol{\sigma}\mathbf{T}^T$$

$$\mathbf{\epsilon}' = \mathbf{T} \mathbf{\sigma} \mathbf{T}^T$$

Složky napětí a deformace lze uskupit do tzv. tenzoru napětí a tenzoru deformace.

$$\sigma = \begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} \qquad \varepsilon = \begin{bmatrix} \varepsilon_{xx} & 0 & 0 \\ 0 & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{bmatrix}$$
Pootočením souřadného systému pomocí transformační matice T dostaneme
$$\sigma' = \mathbf{T}\sigma\mathbf{T}^{T}$$

$$\begin{bmatrix} \sigma'_{xx} & \sigma'_{xy} & \sigma'_{xz} \\ \sigma'_{yx} & \sigma'_{yy} & \sigma'_{yz} \\ \sigma'_{zx} & \sigma'_{zy} & \sigma'_{zz} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix} \begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} \begin{bmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{23} & t_{33} \end{bmatrix}$$

$$\varepsilon' = \mathbf{T}\sigma\mathbf{T}^{T}$$

$$\begin{bmatrix} \varepsilon'_{xx} & \varepsilon'_{xy} & \varepsilon'_{xz} \\ \varepsilon'_{yx} & \varepsilon'_{yy} & \varepsilon'_{yz} \\ \varepsilon'_{zx} & \varepsilon'_{zy} & \varepsilon'_{zz} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} & 0 & 0 \\ 0 & \varepsilon_{yy} & 0 \\ 0 & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{bmatrix} \begin{bmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{22} & t_{32} \\ t_{13} & t_{23} & t_{33} \end{bmatrix}$$

Oba tenzory jsou symetrické tj., $\sigma_{ij} = \sigma_{ji}$ a $\varepsilon_{ij} = \varepsilon_{ji}$

Složky napětí a deformace lze uskupit do tzv. tenzoru napětí a tenzoru deformace.

$$\sigma = \begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} \qquad \varepsilon = \begin{bmatrix} \varepsilon_{xx} & 0 & 0 \\ 0 & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{bmatrix}$$
Pootočením souřadného systému pomocí transformační matice T dostaneme
$$\sigma' = T\sigma T^{T}$$

$$\begin{bmatrix} \sigma'_{xx} & \sigma'_{xy} & \sigma'_{xz} \\ \sigma'_{yx} & \sigma'_{yy} & \sigma'_{yz} \\ \sigma'_{zx} & \sigma'_{zy} & \sigma'_{zz} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix} \begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} \begin{bmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{23} & t_{33} \end{bmatrix}$$

$$\varepsilon' = T\sigma T^{T}$$

$$\begin{bmatrix} \varepsilon'_{xx} & \varepsilon'_{xy} & \varepsilon'_{xz} \\ \varepsilon'_{yx} & \varepsilon'_{yy} & \varepsilon'_{yz} \\ \varepsilon'_{zx} & \varepsilon'_{zy} & \varepsilon'_{zz} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} & 0 & 0 \\ 0 & \varepsilon_{yy} & 0 \\ 0 & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{bmatrix} \begin{bmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{22} & t_{32} \\ t_{13} & t_{23} & t_{33} \end{bmatrix}$$

$$Foch ana které působ$$

Oba tenzory jsou symetrické tj., $\sigma_{ij} = \sigma_{ji}$ a $\varepsilon_{ij} = \varepsilon_{ji}$

Z výše uvedeného transformačního vztahu lze ukázat, že:

$$\begin{bmatrix} \sigma'_{xx} & \sigma'_{xy} & \sigma'_{xz} \\ \sigma'_{yx} & \sigma'_{yy} & \sigma'_{yz} \\ \sigma'_{zx} & \sigma'_{zy} & \sigma'_{zz} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix} \begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} \begin{bmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{22} & t_{32} \\ t_{13} & t_{23} & t_{33} \end{bmatrix} \checkmark$$

y

Z výše uvedeného transformačního vztahu lze ukázat, že:

$$\begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{22} & t_{32} \\ t_{13} & t_{23} & t_{33} \end{bmatrix} \begin{bmatrix} \sigma'_{xx} & \sigma'_{xy} & \sigma'_{xz} \\ \sigma'_{yx} & \sigma'_{yy} & \sigma'_{yz} \\ \sigma'_{zx} & \sigma'_{zy} & \sigma'_{zz} \end{bmatrix} \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix} \mathbf{a}$$

Z výše uvedeného transformačního vztahu lze ukázat, že:

$$\begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{22} & t_{32} \\ t_{13} & t_{23} & t_{33} \end{bmatrix} \begin{bmatrix} \sigma'_{xx} & \sigma'_{xy} & \sigma'_{xz} \\ \sigma'_{yx} & \sigma'_{yy} & \sigma'_{yz} \\ \sigma'_{zx} & \sigma'_{zy} & \sigma'_{zz} \end{bmatrix} \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix} \neq \mathbf{1}$$

Z výše uvedeného transformačního vztahu lze ukázat, že:

$$\begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{22} & t_{32} \\ t_{13} & t_{23} & t_{33} \end{bmatrix} \begin{bmatrix} \sigma'_{xx} & \sigma'_{xy} & \sigma'_{xz} \\ \sigma'_{yx} & \sigma'_{yy} & \sigma'_{yz} \\ \sigma'_{zx} & \sigma'_{zy} & \sigma'_{zz} \end{bmatrix} \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix}$$

- V takovém případě hovoříme o složkách σ_{xx} , σ_{yy} , σ_{zz} (σ_1 , σ_2 , σ_3) jako o hlavních napětích.
- **Trajektorie hlavních napětí** lze použít při analýzách komplikovanějších tvarů konstrukce a pro jejich následné vyztužení nebo zesílení. Pro hlavní napětí vždy platí $\sigma_1 < \sigma_2 < \sigma_3$.

Z výše uvedeného transformačního vztahu lze ukázat, že:

$$\begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{22} & t_{32} \\ t_{13} & t_{23} & t_{33} \end{bmatrix} \begin{bmatrix} \sigma'_{xx} & \sigma'_{xy} & \sigma'_{xz} \\ \sigma'_{yx} & \sigma'_{yy} & \sigma'_{yz} \\ \sigma'_{zx} & \sigma'_{zy} & \sigma'_{zz} \end{bmatrix} \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix}$$

- V takovém případě hovoříme o složkách σ_{xx} , σ_{yy} , σ_{zz} (σ_1 , σ_2 , σ_3) jako o hlavních napětích.
- **Trajektorie hlavních napětí** lze použít při analýzách komplikovanějších tvarů konstrukce a pro jejich následné vyztužení nebo zesílení. Pro hlavní napětí vždy platí $\sigma_1 < \sigma_2 < \sigma_3$.

Z výše uvedeného transformačního vztahu lze ukázat, že:

$$\begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{22} & t_{32} \\ t_{13} & t_{23} & t_{33} \end{bmatrix} \begin{bmatrix} \sigma'_{xx} & \sigma'_{xy} & \sigma'_{xz} \\ \sigma'_{yx} & \sigma'_{yy} & \sigma'_{yz} \\ \sigma'_{zx} & \sigma'_{zy} & \sigma'_{zz} \end{bmatrix} \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix}$$

- V takovém případě hovoříme o složkách σ_{xx} , σ_{yy} , σ_{zz} (σ_1 , σ_2 , σ_3) jako o hlavních napětích.
- **Trajektorie hlavních napětí** lze použít při analýzách komplikovanějších tvarů konstrukce a pro jejich následné vyztužení nebo zesílení. Pro hlavní napětí vždy platí $\sigma_1 < \sigma_2 < \sigma_3$.

Z výše uvedeného transformačního vztahu lze ukázat, že:

$$\begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{22} & t_{32} \\ t_{13} & t_{23} & t_{33} \end{bmatrix} \begin{bmatrix} \sigma'_{xx} & \sigma'_{xy} & \sigma'_{xz} \\ \sigma'_{yx} & \sigma'_{yy} & \sigma'_{yz} \\ \sigma'_{zx} & \sigma'_{zy} & \sigma'_{zz} \end{bmatrix} \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix}$$

- V takovém případě hovoříme o složkách σ_{xx} , σ_{yy} , σ_{zz} (σ_1 , σ_2 , σ_3) jako o hlavních napětích.
- **Trajektorie hlavních napětí** lze použít při analýzách komplikovanějších tvarů konstrukce a pro jejich následné vyztužení nebo zesílení. Pro hlavní napětí vždy platí $\sigma_1 < \sigma_2 < \sigma_3$.

Z výše uvedeného transformačního vztahu lze ukázat, že:

$$\begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{22} & t_{32} \\ t_{13} & t_{23} & t_{33} \end{bmatrix} \begin{bmatrix} \sigma'_{xx} & \sigma'_{xy} & \sigma'_{xz} \\ \sigma'_{yx} & \sigma'_{yy} & \sigma'_{yz} \\ \sigma'_{zx} & \sigma'_{zy} & \sigma'_{zz} \end{bmatrix} \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix}$$

- V takovém případě hovoříme o složkách σ_{xx} , σ_{yy} , σ_{zz} (σ_1 , σ_2 , σ_3) jako o hlavních napětích.
- **Trajektorie hlavních napětí** lze použít při analýzách komplikovanějších tvarů konstrukce a pro jejich následné vyztužení nebo zesílení. Pro hlavní napětí vždy platí $\sigma_1 < \sigma_2 < \sigma_3$.

Z výše uvedeného transformačního vztahu lze ukázat, že:

$$\begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{22} & t_{32} \\ t_{13} & t_{23} & t_{33} \end{bmatrix} \begin{bmatrix} \sigma'_{xx} & \sigma'_{xy} & \sigma'_{xz} \\ \sigma'_{yx} & \sigma'_{yy} & \sigma'_{yz} \\ \sigma'_{zx} & \sigma'_{zy} & \sigma'_{zz} \end{bmatrix} \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix}$$

- V takovém případě hovoříme o složkách σ_{xx} , σ_{yy} , σ_{zz} (σ_1 , σ_2 , σ_3) jako o hlavních napětích.
- **Trajektorie hlavních napětí** lze použít při analýzách komplikovanějších tvarů konstrukce a pro jejich následné vyztužení nebo zesílení. Pro hlavní napětí vždy platí $\sigma_1 < \sigma_2 < \sigma_3$.

Z výše uvedeného transformačního vztahu lze ukázat, že:

$$\begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{22} & t_{32} \\ t_{13} & t_{23} & t_{33} \end{bmatrix} \begin{bmatrix} \sigma'_{xx} & \sigma'_{xy} & \sigma'_{xz} \\ \sigma'_{yx} & \sigma'_{yy} & \sigma'_{yz} \\ \sigma'_{zx} & \sigma'_{zy} & \sigma'_{zz} \end{bmatrix} \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix}$$

- V takovém případě hovoříme o složkách σ_{xx} , σ_{yy} , σ_{zz} (σ_1 , σ_2 , σ_3) jako o hlavních napětích.
- **Trajektorie hlavních napětí** lze použít při analýzách komplikovanějších tvarů konstrukce a pro jejich následné vyztužení nebo zesílení. Pro hlavní napětí vždy platí $\sigma_1 < \sigma_2 < \sigma_3$.

Z výše uvedeného transformačního vztahu lze ukázat, že:

$$\begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{22} & t_{32} \\ t_{13} & t_{23} & t_{33} \end{bmatrix} \begin{bmatrix} \sigma'_{xx} & \sigma'_{xy} & \sigma'_{xz} \\ \sigma'_{yx} & \sigma'_{yy} & \sigma'_{yz} \\ \sigma'_{zx} & \sigma'_{zy} & \sigma'_{zz} \end{bmatrix} \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix}$$

- V takovém případě hovoříme o složkách σ_{xx} , σ_{yy} , σ_{zz} (σ_1 , σ_2 , σ_3) jako o hlavních napětích.
- **Trajektorie hlavních napětí** lze použít při analýzách komplikovanějších tvarů konstrukce a pro jejich následné vyztužení nebo zesílení. Pro hlavní napětí vždy platí $\sigma_1 < \sigma_2 < \sigma_3$.

Z výše uvedeného transformačního vztahu lze ukázat, že:

$$\begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{22} & t_{32} \\ t_{13} & t_{23} & t_{33} \end{bmatrix} \begin{bmatrix} \sigma'_{xx} & \sigma'_{xy} & \sigma'_{xz} \\ \sigma'_{yx} & \sigma'_{yy} & \sigma'_{yz} \\ \sigma'_{zx} & \sigma'_{zy} & \sigma'_{zz} \end{bmatrix} \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix}$$

- V takovém případě hovoříme o složkách σ_{xx} , σ_{yy} , σ_{zz} (σ_1 , σ_2 , σ_3) jako o hlavních napětích.
- **Trajektorie hlavních napětí** lze použít při analýzách komplikovanějších tvarů konstrukce a pro jejich následné vyztužení nebo zesílení. Pro hlavní napětí vždy platí $\sigma_1 < \sigma_2 < \sigma_3$.

Z výše uvedeného transformačního vztahu lze ukázat, že:

$$\begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{22} & t_{32} \\ t_{13} & t_{23} & t_{33} \end{bmatrix} \begin{bmatrix} \sigma'_{xx} & \sigma'_{xy} & \sigma'_{xz} \\ \sigma'_{yx} & \sigma'_{yy} & \sigma'_{yz} \\ \sigma'_{zx} & \sigma'_{zy} & \sigma'_{zz} \end{bmatrix} \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix}$$

- V takovém případě hovoříme o složkách σ_{xx} , σ_{yy} , σ_{zz} (σ_1 , σ_2 , σ_3) jako o hlavních napětích.
- **Trajektorie hlavních napětí** lze použít při analýzách komplikovanějších tvarů konstrukce a pro jejich následné vyztužení nebo zesílení. Pro hlavní napětí vždy platí $\sigma_1 < \sigma_2 < \sigma_3$.

Velikost elementu:

 $\mathbf{x} = \mathbf{x}(l, b, h)$ $\mathbf{u} = \mathbf{u}(dl, db, dh)$
TENZORY NAPĚTÍ A DEFORMACE

TENZORY NAPĚTÍ A DEFORMACE

TENZORY NAPĚTÍ A DEFORMACE

Ze symetrie tenzoru deformace musí platit, že:

$$\varepsilon_{xy} = \varepsilon_{yx}$$

a tedy

$$\varepsilon_{xy} = \frac{1}{2} \left(\frac{db}{l} + \frac{dl}{b} \right)$$
$$\varepsilon_{yx} = \frac{1}{2} \left(\frac{dl}{b} + \frac{db}{l} \right)$$

- STATICKÁ TAHOVÁ ZKOUŠKA OCELI
- ROZŠÍŘENÝ HOOKŮV ZÁKON
- TENZORY NAPĚTÍ A DEFORMACE
- MATERIÁLOVÁ MATICE TUHOSTI
- IZOTROPNÍ A ANIZOTROPNÍ MATERIÁL

- Práce vykonaná zatížením elastického tělesa, je uložena "uvnitř" tělesa ve formě deformační energie E_i
- V případě idealizovaného elastického tělesa je tato energie plně obnovitelná pakliže se těleso navrátí do původního stavu
- Pro jednoosou napjatost lze změnu hustoty deformační energie W zapsat jako:

$$\frac{dW}{d\varepsilon} = \sigma$$

- Práce vykonaná zatížením elastického tělesa, je uložena "uvnitř" σ_{a} tělesa ve formě **deformační energie** E_i
- V případě idealizovaného elastického tělesa je tato energie plně obnovitelná pakliže se těleso navrátí do původního stavu
- Pro jednoosou napjatost lze změnu hustoty deformační energie W zapsat jako:

$$\frac{dW}{d\varepsilon} = \sigma$$

• použitím Hookova zákona pro jednoosou napjatost $\varepsilon = \frac{\sigma}{E}$ se rovnice upraví na

$$W = \int_{\sigma} \sigma \frac{d\sigma}{E} = \frac{1}{2} \frac{\sigma^2}{E} = \frac{1}{2} \sigma \varepsilon$$

- Práce vykonaná zatížením elastického tělese, je uložena "uvnitř" $\mathcal{O}_{\mathbf{d}}$ tělesa ve formě **deformační energie** E_i
- V případě idealizovaného elastického tělesa je tato energie plně obnovitelná pakliže se těleso navrátí do původního stavu
- Pro jednoosou napjatost lze změnu hustoty deformační energie W zapsat jako:

$$\frac{dW}{d\varepsilon} = \sigma$$

• použitím Hookova zákona pro jednoosou napjatost $\varepsilon = \frac{\sigma}{E}$ se rovnice upraví na

$$W = \int_{\sigma} \sigma \frac{d\sigma}{E} = \frac{1}{2} \frac{\sigma^2}{E} = \frac{1}{2} \sigma \varepsilon$$

• Deformační energie uložená v objemu tělesa V se pak určí jako

$$E_i = \int_V W \, dV$$

Výpočet deformační energie E_ia energie vnějších sil E_e je nedílnou součástí všech numerických výpočtů v inženýrské praxi.

$$\varepsilon = C\sigma$$
 $\sigma = D\varepsilon$ $D = C^{-1}$

• Složky tenzoru deformace $\boldsymbol{\varepsilon}$ a napětí $\boldsymbol{\sigma}$ jsou svázány tenzorem poddajnosti \mathbf{C} a tuhosti \mathbf{D} .

$$\varepsilon_{ij} = C_{ijkl}\sigma_{kl}$$
 $\sigma_{ij} = D_{ijkl}\varepsilon_{kl}$ $\mathbf{D} = \mathbf{C}^{-1}$

• Složky tenzoru deformace ε a napětí σ jsou svázány tenzorem poddajnosti C a tuhosti D.

$$\varepsilon_{ij} = C_{ijkl}\sigma_{kl}$$
 $\sigma_{ij} = D_{ijkl}\varepsilon_{kl}$ $\mathbf{D} = \mathbf{C}^{-1}$

• Tenzor poddajnosti má v základním tvaru 81 (3 x 3 x 3 x 3) nezávislých složek (tenzor 4. řádu)

	C_{1111}	C_{1112}	C_{1113}	C_{1121}	C_{1122}	C_{1123}	C_{1131}	C_{1132}	C ₁₁₃₃
	<i>C</i> ₁₂₁₁	C_{1212}	C_{1213}	C_{1221}	C_{1222}	C_{1223}	C_{1231}	C_{1232}	<i>C</i> ₁₂₃₃
	<i>C</i> ₁₃₁₁	C_{1312}	C_{1313}	C_{1321}	C_{1322}	C_{1323}	C_{1331}	C_{1332}	<i>C</i> ₁₃₃₃
	<i>C</i> ₂₁₁₁	C_{2112}	C_{2113}	C_{2121}	C_{2122}	C ₂₁₂₃	C_{2131}	C_{2132}	C ₂₁₃₃
$C_{ijkl} =$	<i>C</i> ₂₂₁₁	C_{2212}	C_{2213}	C_{2221}	C ₂₂₂₂	C ₂₂₂₃	C_{2231}	C ₂₂₃₂	C ₂₂₃₃
-	<i>C</i> ₂₃₁₁	C_{2312}	C_{2313}	C_{2321}	C_{2322}	C_{2323}	C_{2331}	C_{2332}	C ₂₃₃₃
	<i>C</i> ₃₁₁₁	C_{3112}	C_{3113}	C_{3121}	C_{3122}	C_{3123}	C_{3131}	C_{3132}	C_{3133}
	<i>C</i> ₃₂₁₁	C_{3212}	C_{3213}	C_{3221}	C_{3222}	C_{3223}	C_{3231}	C_{3232}	C ₃₂₃₃
	C_{3311}	C_{3312}	C_{3313}	C_{3321}	C_{3322}	C_{3323}	C_{3331}	C_{3332}	C_{3333}

• Složky tenzoru deformace $\boldsymbol{\varepsilon}$ a napětí $\boldsymbol{\sigma}$ jsou svázány tenzorem poddajnosti \mathbf{C} a tuhosti \mathbf{D} .

$$\varepsilon_{ij} = C_{ijkl}\sigma_{kl}$$
 $\sigma_{ij} = D_{ijkl}\varepsilon_{kl}$ $\mathbf{D} = \mathbf{C}^{-1}$

- Tenzor poddajnosti má v základním tvaru 81 (3 x 3 x 3 x 3) nezávislých složek (tenzor 4. řádu)
- Díky symetrii tenzorů $\mathbf{\epsilon}$ a $\mathbf{\sigma}$ ($\varepsilon_{ij} = \varepsilon_{ji}$, $\sigma_{kl} = \sigma_{lk}$) se počet nezávislých složek zredukuje na 36

$$\begin{aligned} \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jikl} \sigma_{kl} \\ \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jilk} \sigma_{lk} \end{aligned}$$

• Složky tenzoru deformace ϵ a napětí σ jsou svázány tenzorem poddajnosti C a tuhosti D.

$$\varepsilon_{ij} = C_{ijkl}\sigma_{kl}$$
 $\sigma_{ij} = D_{ijkl}\varepsilon_{kl}$ $\mathbf{D} = \mathbf{C}^{-1}$

- Tenzor poddajnosti má v základním tvaru 81 (3 x 3 x 3 x 3) nezávislých složek (tenzor 4. řádu)
- Díky symetrii tenzorů $\mathbf{\epsilon}$ a $\mathbf{\sigma}$ ($\varepsilon_{ij} = \varepsilon_{ji}$, $\sigma_{kl} = \sigma_{lk}$) se počet nezávislých složek zredukuje na 36

$$\begin{aligned} \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jikl} \sigma_{kl} \\ \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jilk} \sigma_{lk} \end{aligned}$$

pro 1D:
$$\sigma = \frac{dW}{d\varepsilon}$$
, $W = \frac{1}{2}\sigma\varepsilon$

• Složky tenzoru deformace ϵ a napětí σ jsou svázány tenzorem poddajnosti C a tuhosti D.

$$\varepsilon_{ij} = C_{ijkl}\sigma_{kl}$$
 $\sigma_{ij} = D_{ijkl}\varepsilon_{kl}$ $\mathbf{D} = \mathbf{C}^{-1}$

- Tenzor poddajnosti má v základním tvaru 81 (3 x 3 x 3 x 3) nezávislých složek (tenzor 4. řádu)
- Díky symetrii tenzorů $\mathbf{\epsilon}$ a $\mathbf{\sigma}$ ($\varepsilon_{ij} = \varepsilon_{ji}$, $\sigma_{kl} = \sigma_{lk}$) se počet nezávislých složek zredukuje na 36

$$\begin{aligned} \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jikl} \sigma_{kl} \\ \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jilk} \sigma_{lk} \end{aligned}$$

pro 3D:
$$\sigma_{ij} = \frac{\partial W}{\partial \varepsilon_{ij}}, \qquad W = \frac{1}{2}\sigma_{ij}\varepsilon_{ij}$$

• Složky tenzoru deformace ϵ a napětí σ jsou svázány tenzorem poddajnosti C a tuhosti D.

$$\varepsilon_{ij} = C_{ijkl}\sigma_{kl}$$
 $\sigma_{ij} = D_{ijkl}\varepsilon_{kl}$ $\mathbf{D} = \mathbf{C}^{-1}$

- Tenzor poddajnosti má v základním tvaru 81 (3 x 3 x 3 x 3) nezávislých složek (tenzor 4. řádu)
- Díky symetrii tenzorů $\mathbf{\epsilon}$ a $\mathbf{\sigma}$ ($\varepsilon_{ij} = \varepsilon_{ji}$, $\sigma_{kl} = \sigma_{lk}$) se počet nezávislých složek zredukuje na 36

$$\begin{aligned} \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jikl} \sigma_{kl} \\ \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jilk} \sigma_{lk} \end{aligned}$$

pro 3D:
$$\sigma_{ij} = \frac{\partial W}{\partial \varepsilon_{ij}}, \quad W = \frac{1}{2}\sigma_{ij}\varepsilon_{ij}$$

 $\sigma_{ij} = \frac{\partial}{\partial \varepsilon_{ij}} \left(\frac{1}{2}\sigma_{kl}\varepsilon_{kl}\right) = \frac{\partial}{\partial \varepsilon_{ij}} \left(\frac{1}{2}D_{klmn}\varepsilon_{mn}\varepsilon_{kl}\right)$

• Složky tenzoru deformace ϵ a napětí σ jsou svázány tenzorem poddajnosti C a tuhosti D.

$$\varepsilon_{ij} = C_{ijkl}\sigma_{kl}$$
 $\sigma_{ij} = D_{ijkl}\varepsilon_{kl}$ $\mathbf{D} = \mathbf{C}^{-1}$

- Tenzor poddajnosti má v základním tvaru 81 (3 x 3 x 3 x 3) nezávislých složek (tenzor 4. řádu)
- Díky symetrii tenzorů $\mathbf{\epsilon}$ a $\mathbf{\sigma}$ ($\varepsilon_{ij} = \varepsilon_{ji}$, $\sigma_{kl} = \sigma_{lk}$) se počet nezávislých složek zredukuje na 36

$$\begin{aligned} \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jikl} \sigma_{kl} \\ \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jilk} \sigma_{lk} \end{aligned}$$

pro 3D:
$$\sigma_{ij} = \frac{\partial W}{\partial \varepsilon_{ij}}, \qquad W = \frac{1}{2}\sigma_{ij}\varepsilon_{ij}$$
$$\sigma_{ij} = \frac{\partial}{\partial \varepsilon_{ij}} \left(\frac{1}{2}\sigma_{kl}\varepsilon_{kl}\right) = \frac{\partial}{\partial \varepsilon_{ij}} \left(\frac{1}{2}D_{klmn}\varepsilon_{mn}\varepsilon_{kl}\right) =$$
$$= \frac{1}{2}D_{klmn} \left(\frac{\partial \varepsilon_{mn}}{\partial \varepsilon_{ij}}\varepsilon_{kl} + \varepsilon_{mn}\frac{\partial \varepsilon_{kl}}{\partial \varepsilon_{ij}}\right) = \frac{1}{2}D_{klmn} \left(\delta_{mi}\delta_{nj}\varepsilon_{kl} + \varepsilon_{mn}\delta_{ki}\delta_{lj}\right)$$

• Složky tenzoru deformace ϵ a napětí σ jsou svázány tenzorem poddajnosti C a tuhosti D.

$$\varepsilon_{ij} = C_{ijkl}\sigma_{kl}$$
 $\sigma_{ij} = D_{ijkl}\varepsilon_{kl}$ $\mathbf{D} = \mathbf{C}^{-1}$

- Tenzor poddajnosti má v základním tvaru 81 (3 x 3 x 3 x 3) nezávislých složek (tenzor 4. řádu)
- Díky symetrii tenzorů $\mathbf{\epsilon}$ a $\mathbf{\sigma}$ ($\varepsilon_{ij} = \varepsilon_{ji}$, $\sigma_{kl} = \sigma_{lk}$) se počet nezávislých složek zredukuje na 36

$$\begin{aligned} \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jikl} \sigma_{kl} \\ \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jilk} \sigma_{lk} \end{aligned}$$

pro 3D:
$$\sigma_{ij} = \frac{\partial W}{\partial \varepsilon_{ij}}, \qquad W = \frac{1}{2}\sigma_{ij}\varepsilon_{ij}$$
$$\sigma_{ij} = \frac{\partial}{\partial \varepsilon_{ij}} \left(\frac{1}{2}\sigma_{kl}\varepsilon_{kl}\right) = \frac{\partial}{\partial \varepsilon_{ij}} \left(\frac{1}{2}D_{klmn}\varepsilon_{mn}\varepsilon_{kl}\right) =$$
$$= \frac{1}{2}D_{klmn} \left(\frac{\partial \varepsilon_{mn}}{\partial \varepsilon_{ij}}\varepsilon_{kl} + \varepsilon_{mn}\frac{\partial \varepsilon_{kl}}{\partial \varepsilon_{ij}}\right) = \frac{1}{2}D_{klmn} (\delta_{mi}\delta_{nj}\varepsilon_{kl} + \varepsilon_{mn}\delta_{ki}\delta_{lj})$$
$$= \frac{1}{2} \left(D_{klij}\varepsilon_{kl} + D_{ijmn}\varepsilon_{mn}\right)$$

• Složky tenzoru deformace ϵ a napětí σ jsou svázány tenzorem poddajnosti C a tuhosti D.

$$\varepsilon_{ij} = C_{ijkl}\sigma_{kl}$$
 $\sigma_{ij} = D_{ijkl}\varepsilon_{kl}$ $\mathbf{D} = \mathbf{C}^{-1}$

- Tenzor poddajnosti má v základním tvaru 81 (3 x 3 x 3 x 3) nezávislých složek (tenzor 4. řádu)
- Díky symetrii tenzorů $\mathbf{\epsilon}$ a $\mathbf{\sigma}$ ($\varepsilon_{ij} = \varepsilon_{ji}$, $\sigma_{kl} = \sigma_{lk}$) se počet nezávislých složek zredukuje na 36

$$\begin{aligned} \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jikl} \sigma_{kl} \\ \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jilk} \sigma_{lk} \end{aligned}$$

pro 3D:
$$\sigma_{ij} = \frac{\partial W}{\partial \varepsilon_{ij}}, \quad W = \frac{1}{2}\sigma_{ij}\varepsilon_{ij}$$

$$for \delta_{ij} = \frac{\partial}{\partial \varepsilon_{ij}} \left(\frac{1}{2}\sigma_{kl}\varepsilon_{kl}\right) = \frac{\partial}{\partial \varepsilon_{ij}} \left(\frac{1}{2}D_{klmn}\varepsilon_{mn}\varepsilon_{kl}\right) = \frac{1}{2}D_{klmn} \left(\frac{\partial \varepsilon_{mn}}{\partial \varepsilon_{ij}}\varepsilon_{kl} + \varepsilon_{mn}\frac{\partial \varepsilon_{kl}}{\partial \varepsilon_{ij}}\right) = \frac{1}{2}D_{klmn} \left(\delta_{mi}\delta_{nj}\varepsilon_{kl} + \varepsilon_{mn}\delta_{ki}\delta_{lj}\right)$$

$$= \frac{1}{2}(D_{klij}\varepsilon_{kl} + D_{ijmn}\varepsilon_{mn}) = \frac{1}{2}(D_{klij}\varepsilon_{kl} + D_{ijkl}\varepsilon_{kl})$$

• Složky tenzoru deformace ϵ a napětí σ jsou svázány tenzorem poddajnosti C a tuhosti D.

$$\varepsilon_{ij} = C_{ijkl}\sigma_{kl}$$
 $\sigma_{ij} = D_{ijkl}\varepsilon_{kl}$ $\mathbf{D} = \mathbf{C}^{-1}$

- Tenzor poddajnosti má v základním tvaru 81 (3 x 3 x 3 x 3) nezávislých složek (tenzor 4. řádu)
- Díky symetrii tenzorů $\mathbf{\epsilon}$ a $\mathbf{\sigma}$ ($\varepsilon_{ij} = \varepsilon_{ji}$, $\sigma_{kl} = \sigma_{lk}$) se počet nezávislých složek zredukuje na 36

$$\begin{aligned} \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jikl} \sigma_{kl} \\ \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jilk} \sigma_{lk} \end{aligned}$$

pro 3D:
$$\sigma_{ij} = \frac{\partial W}{\partial \varepsilon_{ij}}, \qquad W = \frac{1}{2}\sigma_{ij}\varepsilon_{ij}$$
(1) $\varepsilon_{mn} = \varepsilon_{kl}$
 $\sigma_{ij} = \frac{\partial}{\partial \varepsilon_{ij}} \left(\frac{1}{2}\sigma_{kl}\varepsilon_{kl}\right) = \frac{\partial}{\partial \varepsilon_{ij}} \left(\frac{1}{2}D_{klmn}\varepsilon_{mn}\varepsilon_{kl}\right) =$
(2) $D_{klij} = D_{ijkl}$
 $= \frac{1}{2}D_{klmn} \left(\frac{\partial \varepsilon_{mn}}{\partial \varepsilon_{ij}}\varepsilon_{kl} + \varepsilon_{mn}\frac{\partial \varepsilon_{kl}}{\partial \varepsilon_{ij}}\right) = \frac{1}{2}D_{klmn} (\delta_{mi}\delta_{nj}\varepsilon_{kl} + \varepsilon_{mn}\delta_{ki}\delta_{lj})$
 $= \frac{1}{2}(D_{klij}\varepsilon_{kl} + D_{ijmn}\varepsilon_{mn}) = \frac{1}{2}(D_{klij}\varepsilon_{kl} + D_{ijkl}\varepsilon_{kl}) = D_{ijkl}\varepsilon_{kl}$

$$\varepsilon_{ij} = C_{ijkl}\sigma_{kl}$$
 $\sigma_{ij} = D_{ijkl}\varepsilon_{kl}$ $\mathbf{D} = \mathbf{C}^{-1}$

- Tenzor poddajnosti má v základním tvaru 81 (3 x 3 x 3 x 3) nezávislých složek (tenzor 4. řádu)
- Díky symetrii tenzorů $\mathbf{\epsilon}$ a $\mathbf{\sigma}$ ($\varepsilon_{ij} = \varepsilon_{ji}$, $\sigma_{kl} = \sigma_{lk}$) se počet nezávislých složek zredukuje na 36

$$\begin{aligned} \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jikl} \sigma_{kl} \\ \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jilk} \sigma_{lk} \end{aligned}$$

- Využitím **hustoty deformační energie** W lze počet nezávislých složek dále snížit na 21
- V praxi se osvědčil tzv. Voigtův zápis, který zachovává hustotu deformační energie a snižuje řády tenzorů

$$\mathbf{\sigma} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix}$$

$$\mathbf{\varepsilon} = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{bmatrix}$$

Složky tenzoru deformace ε a napětí σ jsou svázány tenzorem poddajnosti **C** a tuhosti **D**.

$$\varepsilon_{ij} = C_{ijkl}\sigma_{kl}$$
 $\sigma_{ij} = D_{ijkl}\varepsilon_{kl}$ $\mathbf{D} = \mathbf{C}^{-1}$

- Tenzor poddajnosti má v základním tvaru 81 (3 x 3 x 3 x 3) nezávislých složek (tenzor 4. řádu)
- Díky symetrii tenzorů $\boldsymbol{\varepsilon}$ a $\boldsymbol{\sigma}$ ($\varepsilon_{ij} = \varepsilon_{ji}$, $\sigma_{kl} = \sigma_{lk}$) se počet nezávislých složek zredukuje na 36

$$\begin{aligned} \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jikl} \sigma_{kl} \\ \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jilk} \sigma_{lk} \end{aligned}$$

- Využitím hustoty deformační energie W lze počet nezávislých složek dále snížit na 21
- V praxi se osvědčil tzv. Voigtův zápis, který zachovává hustotu deformační energie a snižuje řády tenzorů

$$\mathbf{\sigma} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{yz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix}$$
$$\mathbf{\varepsilon} = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{yz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{bmatrix}$$

 c_{ZZ}

$$\varepsilon_{ij} = C_{ijkl}\sigma_{kl}$$
 $\sigma_{ij} = D_{ijkl}\varepsilon_{kl}$ $\mathbf{D} = \mathbf{C}^{-1}$

- Tenzor poddajnosti má v základním tvaru 81 (3 x 3 x 3 x 3) nezávislých složek (tenzor 4. řádu)
- Díky symetrii tenzorů $\mathbf{\epsilon}$ a $\mathbf{\sigma}$ ($\varepsilon_{ij} = \varepsilon_{ji}$, $\sigma_{kl} = \sigma_{lk}$) se počet nezávislých složek zredukuje na 36

$$\begin{aligned} \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jikl} \sigma_{kl} \\ \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jilk} \sigma_{lk} \end{aligned}$$

- Využitím hustoty deformační energie W lze počet nezávislých složek dále snížit na 21
- V praxi se osvědčil tzv. Voigtův zápis, který zachovává hustotu deformační energie a snižuje řády tenzorů

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{yz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{zz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix}$$
$$\boldsymbol{\bar{\sigma}} = (\bar{\sigma}_{xx}, \bar{\sigma}_{yy}, \bar{\sigma}_{zz}, \bar{\sigma}_{yz}, \bar{\sigma}_{xz}, \bar{\sigma}_{xy})$$
$$\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{xx}, \varepsilon_{xy} & \varepsilon_{yz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{zz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{bmatrix}$$
$$\boldsymbol{\bar{\varepsilon}} = (\bar{\varepsilon}_{xx}, \bar{\varepsilon}_{yy}, \bar{\varepsilon}_{zz}, 2\bar{\varepsilon}_{yz}, 2\bar{\varepsilon}_{xz}, 2\bar{\varepsilon}_{xy})$$

$$\varepsilon_{ij} = C_{ijkl}\sigma_{kl}$$
 $\sigma_{ij} = D_{ijkl}\varepsilon_{kl}$ $\mathbf{D} = \mathbf{C}^{-1}$

- Tenzor poddajnosti má v základním tvaru 81 (3 x 3 x 3 x 3) nezávislých složek (tenzor 4. řádu)
- Díky symetrii tenzorů $\mathbf{\epsilon}$ a $\mathbf{\sigma}$ ($\varepsilon_{ij} = \varepsilon_{ji}$, $\sigma_{kl} = \sigma_{lk}$) se počet nezávislých složek zredukuje na 36

$$\begin{aligned} \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jikl} \sigma_{kl} \\ \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jilk} \sigma_{lk} \end{aligned}$$

- Využitím hustoty deformační energie W lze počet nezávislých složek dále snížit na 21
- V praxi se osvědčil tzv. Voigtův zápis, který zachovává hustotu deformační energie a snižuje řády tenzorů

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{yz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{zz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix}$$
$$\boldsymbol{\bar{\sigma}} = (\bar{\sigma}_{x}, \bar{\sigma}_{y}, \bar{\sigma}_{z}, \bar{\tau}_{yz}, \bar{\tau}_{xz}, \bar{\tau}_{xy})$$
$$\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{yz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{bmatrix}$$
$$\boldsymbol{\bar{\varepsilon}} = (\bar{\varepsilon}_{x}, \bar{\varepsilon}_{y}, \bar{\varepsilon}_{z}, \bar{\gamma}_{yz}, \bar{\gamma}_{xz}, \bar{\gamma}_{xy})$$

$$\varepsilon_{ij} = C_{ijkl}\sigma_{kl}$$
 $\sigma_{ij} = D_{ijkl}\varepsilon_{kl}$ $\mathbf{D} = \mathbf{C}^{-1}$

- Tenzor poddajnosti má v základním tvaru 81 (3 x 3 x 3 x 3) nezávislých složek (tenzor 4. řádu)
- Díky symetrii tenzorů $\mathbf{\epsilon}$ a $\mathbf{\sigma}$ ($\varepsilon_{ij} = \varepsilon_{ji}$, $\sigma_{kl} = \sigma_{lk}$) se počet nezávislých složek zredukuje na 36

$$\begin{aligned} \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jikl} \sigma_{kl} \\ \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jilk} \sigma_{lk} \end{aligned}$$

- Využitím hustoty deformační energie W lze počet nezávislých složek dále snížit na 21
- V praxi se osvědčil tzv. Voigtův zápis, který zachovává hustotu deformační energie a snižuje řády tenzorů

$$\varepsilon_{ij} = C_{ijkl}\sigma_{kl}$$
 $\sigma_{ij} = D_{ijkl}\varepsilon_{kl}$ $\mathbf{D} = \mathbf{C}^{-1}$

- Tenzor poddajnosti má v základním tvaru 81 (3 x 3 x 3 x 3) nezávislých složek (tenzor 4. řádu)
- Díky symetrii tenzorů $\mathbf{\epsilon}$ a $\mathbf{\sigma}$ ($\varepsilon_{ij} = \varepsilon_{ji}$, $\sigma_{kl} = \sigma_{lk}$) se počet nezávislých složek zredukuje na 36

$$\begin{aligned} \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jikl} \sigma_{kl} \\ \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jilk} \sigma_{lk} \end{aligned}$$

- Využitím hustoty deformační energie W lze počet nezávislých složek dále snížit na 21
- V praxi se osvědčil tzv. Voigtův zápis, který zachovává hustotu deformační energie a snižuje řády tenzorů

$$W = \frac{1}{2}\sigma_{ij}\varepsilon_{ij} \qquad \varepsilon_{ij} \Rightarrow \bar{\varepsilon}_{i} \qquad \sigma = \begin{bmatrix} \sigma_{yx} & \sigma_{yy} & \sigma_{zz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix}$$
$$\bar{\sigma} = (\bar{\sigma}_{x}, \bar{\sigma}_{y}, \bar{\sigma}_{z}, \bar{\tau}_{yz}, \bar{\tau}_{xz}, \bar{\tau}_{xy})$$
$$\bar{W} = \frac{1}{2}\bar{\sigma}_{i}\bar{\varepsilon}_{i} \qquad \sigma_{kl} \Rightarrow \bar{\sigma}_{j} \qquad \varepsilon_{ijkl} \Rightarrow \bar{\sigma}_{ij} \qquad \varepsilon_{ijkl} \Rightarrow \bar{c}_{ij} \qquad \varepsilon_{ijkl} \Rightarrow \bar{c}_{ij} \qquad \varepsilon_{ijkl} \Rightarrow \bar{\varepsilon}_{ij} \qquad \varepsilon_{ijkl} \Rightarrow \bar{\varepsilon}_{i$$

$$\varepsilon_{ij} = C_{ijkl}\sigma_{kl}$$
 $\sigma_{ij} = D_{ijkl}\varepsilon_{kl}$ $\mathbf{D} = \mathbf{C}^{-1}$

- Tenzor poddajnosti má v základním tvaru 81 (3 x 3 x 3 x 3) nezávislých složek (tenzor 4. řádu)
- Díky symetrii tenzorů $\mathbf{\epsilon}$ a $\mathbf{\sigma}$ ($\varepsilon_{ij} = \varepsilon_{ji}$, $\sigma_{kl} = \sigma_{lk}$) se počet nezávislých složek zredukuje na 36

$$\begin{aligned} \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jikl} \sigma_{kl} \\ \varepsilon_{ij} &= C_{ijkl} \sigma_{kl} & \varepsilon_{ji} &= C_{jilk} \sigma_{lk} \end{aligned}$$

- Využitím hustoty deformační energie W lze počet nezávislých složek dále snížit na 21
- V praxi se osvědčil tzv. Voigtův zápis, který zachovává hustotu deformační energie a snižuje řády tenzorů

$\left[{}^{\mathcal{E}_1} \right]$	$\begin{bmatrix} C_{11} \\ C \end{bmatrix}$	<i>C</i> ₁₂	C ₁₃	<i>C</i> ₁₄	C_{15}	<i>C</i> ₁₆	$\left[\sigma_{1} \right]$	$\mathbf{\sigma} = \begin{bmatrix} \sigma_{yx} & \sigma_{yy} & \sigma_{zz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix}$
$\frac{\varepsilon_2}{\varepsilon_3}$	$C_{12} C_{13}$	$C_{22} C_{23}$	$C_{23} = C_{33}$	$C_{24} C_{34}$	$C_{25} C_{35}$	$C_{26} C_{36}$	$\left \begin{array}{c} \sigma_2 \\ \sigma_3 \end{array} \right $	$\overline{\boldsymbol{\sigma}} = (\overline{\sigma}_x, \overline{\sigma}_y, \overline{\sigma}_z, \overline{\tau}_{yz}, \overline{\tau}_{xz}, \overline{\tau}_{xy})$
$\left \begin{array}{c} \gamma_4 \\ \gamma \end{array} \right ^{=}$	$= C_{14} $	C_{24}	C_{34}	C_{44}	C_{45}	C_{46}	σ_4	$\mathbf{\varepsilon} = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{yz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \end{bmatrix}$
$\begin{bmatrix} \gamma_5 \\ \gamma_6 \end{bmatrix}$	C_{15} C_{16}	C_{25}	C_{35}	C_{45}	C_{55}	C ₅₆ C ₆₆	$\begin{bmatrix} \sigma_5 \\ \sigma_6 \end{bmatrix}$	$\begin{bmatrix} \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{bmatrix}$
	L-10	-20 T	$\boldsymbol{\varepsilon} = (\varepsilon_x, \varepsilon_y, \varepsilon_z, \gamma_{yz}, \gamma_{xz}, \gamma_{xy})$					

IZOTROPNÍ MATERIÁL

• V technické praxi se často používá matice poddajnosti a tuhosti podle Hookova zákona pro izotropní materiál

$$\begin{split} \varepsilon_{i} &= \mathcal{C}_{ij}\sigma_{j} & \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{yz} \\ \gamma_{xz} \\ \gamma_{xy} \end{bmatrix} = \frac{1}{E} \begin{bmatrix} 1 & -\nu & -\nu & 0 & 0 & 0 \\ -\nu & 1 & -\nu & 0 & 0 & 0 \\ -\nu & -\nu & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2(1+\nu) & 0 & 0 \\ 0 & 0 & 0 & 0 & 2(1+\nu) & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(1+\nu) \end{bmatrix} \begin{bmatrix} \sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \\ \tau_{yz} \\ \tau_{zx} \\ \tau_{xy} \end{bmatrix} \end{split}$$

IZOTROPNÍ MATERIÁL

 V technické praxi se často používá matice poddajnosti a tuhosti podle Hookova zákona pro izotropní materiál

IZOTROPNÍ MATERIÁL

 V technické praxi se často používá matice poddajnosti a tuhosti podle Hookova zákona pro izotropní materiál

- Tato forma poddajnosti/tuhosti má pouze 2 nezávislé složky
- Vlastnosti izotropního materiálu jsou nezávislé na orientaci souřadného systému, a tedy i tenzor poddajnosti/tuhosti. (plasty, slitiny, prostý beton)

- STATICKÁ TAHOVÁ ZKOUŠKA OCELI
- ROZŠÍŘENÝ HOOKŮV ZÁKON
- TENZORY NAPĚTÍ A DEFORMACE
- MATERIÁLOVÁ MATICE TUHOSTI
- IZOTROPNÍ A ANIZOTROPNÍ MATERIÁL

ANIZOTROPNÍ MATERIÁL

- Mnoho materiálů, jako například, vlna, dřevo nebo krystalické minerály mají matici tuhosti závislou na orientaci souřadného systému. Takové materiály označujeme jako anizotropní.
- Výše bylo zmíněno, že plně anizotropní materiál má 81 nezávislých konstant. V technické praxi se však často používají vybrané typy anizotropie, které jsou určeny tzv. rovinami symetrie.

ANIZOTROPNÍ MATERIÁL

- Mnoho materiálů, jako například, vlna, dřevo nebo železobeton mají matici tuhosti závislou na orientaci souřadného systému. Takové materiály označujeme jako anizotropní.
- Výše bylo zmíněno, že plně anizotropní materiál má 81 nezávislých konstant. V technické praxi se však často používají vybrané typy anizotropie, které jsou určeny tzv. rovinami symetrie.

Ne všechny stavební materiály jsou izotropní!

	Pevnostní třídy betonu s pôrovitým kamenivem																	
fick (MPa)	12	16	20	25	30	35	40	45	50	55	60	70	80					
fick.cube (MPa)	13	18	22	28	33	38	44	50	55	60	66	77	88	191				
fiom (MPa)	17	22	28	33	38	43	48	53	58	63	68	78	88	pro $f_{lok} \ge 20 \text{ MPa}$ $f_{lom} = f_{lok} + 8 \text{ (MPa)}$				
f _{ictm} (MPa)	fatm = fatm. If													η1=0,40+0,60 <i>p</i> /2200				
f _{ictk,0,05} (MPa)	$f_{\text{tels},0.05} = f_{\text{ets},0.05} \cdot \eta_1$													5 % - kvantil				
ћ _{ењ.0,95} (MPa)		$f_{\rm tots, 0.06} = f_{\rm tots, 0.06} \cdot \eta_1$												95 % - fkvantil				
Ecm (GPa)	$E_{lom} = E_{cm} \cdot \eta_E$													$\eta_{\rm E} = \left(\rho/2200\right)^2$				
S _{G1} (‰)	M _{cm} /(E _{kl} ·η _E) k = 1,1 pro pisčitý beton s pôrovitým kamenivem; k = 1,0 pro Vsechny betony s pôr. kamen.											viz obrázek 3.2						
elou1(‰)	ε _{ist}											viz obrázek 3.2						
අය (‰)	2,0 2,2										2,3	2,4	2,5	viz obrázek 3.3				
elou2 (‰)	3,5 <i>ŋ</i> 1										2,971	2,7η1	2,6η1	viz obrázek 3.3 apg ≥ 4ag				
n	2,0									1,75	1,6	1,45	1,4					
Ac3(%0)	1,75									1,8	1,9	2,0	2,2	viz obrázek 3.4				
	3,5 m									3,1η1	2.971	2.7η1	2,6ŋ1	viz obrázek 3.4 a₀.s ≥ [a₀.s]				

Pevnostní třídy prostého betonu ČSN EN 1992-1-1

Pevnostní třídy stavebního dřeva ČSN EN 338

	Class	Т 8	Т9	T 10	T 11	T 12	T 13	T 14	T 14,5	T 15	T 16	T 18	T 21	T 22	T 24	T 26	T 27	T 28	T 30
trength properties in N/mm ²																			
Bending	f_{m_wk}	13,5	14,5	16	17	18	19,5	20,5	21	22	23	25,5	29	30,5	33	35	36,5	37,5	40
Tension parallel	ft0,k	8	9	10	11	12	13	14	14,5	15	16	18	21	22	24	26	27	28	30
Tension perpendicular	fc90.x	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
Compression parallel	fc,0,k	16	17	17	18	19	20	21	21	21	22	23	25	26	27	28	29	29	30
Compression perpendicular	fc.90,k	2,0	2,1	2,2	2,2	2,3	2,4	2,5	2,5	2,5	2,6	2,7	2,7	2,7	2,8	2,9	2,9	2,9	3,0
Shear	$f_{v,k}$	2,8	3,0	3,2	3,4	3,6	3,8	4,0	4,0	4,0	4,0	4,0	4,0	4,0	4,0	4,0	4,0	4,0	4,0
Stiffness properties in kl	;tiffness properties in kN/mm²																		
Mean modulus of elasticity parallel tension	E _{t.O.mean}	7,0	7,5	8,0	9,0	9,5	10,0	11,0	11,0	11,5	11,5	12,0	13,0	13,0	13,5	14,0	15,0	15,0	15,5
5 percentile modulus of elasticity parallel tension	Ezo.k	4,7	5,0	5,4	6,0	6,4	6,7	7,4	7,4	7,7	7,7	8,0	8,7	8,7	9,0	9,4	10,1	10,1	10,4
Mean modulus of elasticity perpendicular	Ez90,mean	0,23	0,25	0,27	0,30	0,32	0,33	0,37	0,37	0,38	0,38	0,40	0,43	0,43	0,45	0,47	0,50	0,50	0,52
Mean shear modulus	Gmean	0,44	0,47	0,50	0,56	0,59	0,63	0,69	0,69	0,72	0,72	0,75	0,81	0,81	0,84	0,88	0,94	0,94	0,97

Mechanické vlastnosti závislé na orientaci vůči vláknům o 0^o a 90^o.

Mechanické vlastnosti nezávislé na orientaci

ANIZOTROPNÍ MATERIÁL

- Mnoho materiálů, jako například, vlna, dřevo nebo železobeton mají matici tuhosti závislou na orientaci souřadného systému. Takové materiály označujeme jako anizotropní.
- Výše bylo zmíněno, že plně anizotropní materiál má 81 nezávislých konstant. V technické praxi se však často používají vybrané typy anizotropie, které jsou určeny tzv. rovinami symetrie.

TRIKLINICKÁ SOUSTAVA (OBECNÁ ANIZOTROPIE)

- Materiál bez jakékoliv symetrie
- Má 21 nezávislých elastických konstant

$$\mathbf{D} = \begin{bmatrix} D_{11} & D_{12} & D_{13} & D_{14} & D_{15} & D_{16} \\ D_{12} & D_{22} & D_{23} & D_{24} & D_{25} & D_{26} \\ D_{13} & D_{23} & D_{33} & D_{34} & D_{35} & D_{36} \\ D_{14} & D_{24} & D_{34} & D_{44} & D_{45} & D_{46} \\ D_{15} & D_{25} & D_{35} & D_{45} & D_{55} & D_{56} \\ D_{16} & D_{26} & D_{36} & D_{46} & D_{56} & D_{66} \end{bmatrix}$$

MONOKLINICKÁ SOUSTAVA

- Materiál s jedinou rovinou symetrie
- Má 13 nezávislých elastických konstant

ROVINY SYMETRIE A JEJICH MATICE TUHOSTI

ORTOTROPNÍ SOUSTAVA (ROMBOIDNÍ)

- Materiál se třemi navzájem kolmými rovinami symetrie
- Má 9 nezávislých elastických konstant

$$\mathbf{D} = \begin{bmatrix} D_{11} & D_{12} & D_{13} & 0 & 0 & 0 \\ D_{12} & D_{22} & D_{23} & 0 & 0 & 0 \\ D_{13} & D_{23} & D_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & D_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & D_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & D_{66} \end{bmatrix}$$

PŘÍČNĚ IZOTROPNÍ MATERIÁL

- Materiál je symetrický kolem osy souběžné s vlákny
- Má 5 nezávislých elastických konstant

$$\mathbf{D} = \begin{bmatrix} D_{11} & D_{12} & D_{13} & 0 & 0 & 0 \\ D_{12} & D_{11} & D_{13} & 0 & 0 & 0 \\ D_{13} & D_{13} & D_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & D_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & D_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{(D_{11} - D_{12})}{2} \end{bmatrix}$$

KUBICKÁ SOUSTAVA

- Materiál má tři osy a tři roviny symetrie
- Má 3 nezávislé elastické konstanty

$$\mathbf{D} = \begin{bmatrix} D_{11} & D_{12} & D_{12} & 0 & 0 & 0 \\ D_{12} & D_{11} & D_{12} & 0 & 0 & 0 \\ D_{12} & D_{12} & D_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & D_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & D_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & D_{44} \end{bmatrix}$$
IZOTROPNÍ MATERIÁL

$$\frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0 \\ \nu & 1-\nu & \nu & 0 & 0 & 0 \\ \nu & \nu & 1-\nu & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} & \frac{1-2\nu}{2} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
2 nezávislé konstanty

KUBICKÁ SOUSTAVA

$$\mathbf{D} = \begin{bmatrix} D_{11} & D_{12} & D_{12} & 0 & 0 & 0 \\ D_{12} & D_{11} & D_{12} & 0 & 0 & 0 \\ D_{12} & D_{12} & D_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & D_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & D_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & D_{44} \end{bmatrix}$$

3 nezávislé konstanty

PŘÍČNĚ IZOTROPNÍ MATERIÁL

$$\mathbf{D} = \begin{bmatrix} D_{11} & D_{12} & D_{13} & 0 & 0 & 0 \\ D_{12} & D_{11} & D_{13} & 0 & 0 & 0 \\ D_{13} & D_{13} & D_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & D_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{(D_{11} - D_{12})}{2} \end{bmatrix}$$

5 nezávislých konstant

ORTOTROPNÍ SOUSTAVA

D =	[D ₁₁	D_{12}	D_{13}	0	0	0	٦
	<i>D</i> ₁₂	<i>D</i> ₂₂	D ₂₃	0	0	0	
	D_{13}	D_{23}	D_{33}	0	0	0	
	0	0	0	D_{44}	0	0	
	0	0	0	0	D_{55}	0	
	LΟ	0	0	0	0	D_{66}	
9 nezávislých konstant							

MONOKLINICKÁ SOUSTAVA

D =	D_{11}	D_{12}	D_{13}	0	0	D_{16}	1
	<i>D</i> ₁₂	D_{22}	D_{23}	0	0	D_{26}	
	D ₁₃	D_{23}	D_{33}	0	0	D_{36}	
	0	0	0	D_{44}	D_{45}	0	
	0	0	0	D_{45}	D_{55}	0	
	D_{16}	D_{26}	D_{36}	0	0	D_{66}	

13 nezávislých konstant

TRIKLINICKÁ SOUSTAVA

D_{11}	D_{12}	D_{13}	D_{14}	D_{15}	D_{16}	-
<i>D</i> ₁₂	D_{22}	D_{23}	D_{24}	D_{25}	D_{26}	
<i>D</i> ₁₃	D_{23}	D_{33}	D_{34}	D_{35}	D_{36}	
D_{14}	D_{24}	D_{34}	D_{44}	D_{45}	D_{46}	
D_{15}	D_{25}	D_{35}	D_{45}	D_{55}	D_{56}	
D_{16}	D_{26}	D_{36}	D_{46}	D_{56}	D_{66}	-
	$\begin{bmatrix} D_{11} \\ D_{12} \\ D_{13} \\ D_{14} \\ D_{15} \\ D_{16} \end{bmatrix}$	$\begin{bmatrix} D_{11} & D_{12} \\ D_{12} & D_{22} \\ D_{13} & D_{23} \\ D_{14} & D_{24} \\ D_{15} & D_{25} \\ D_{16} & D_{26} \end{bmatrix}$	$ \begin{bmatrix} D_{11} & D_{12} & D_{13} \\ D_{12} & D_{22} & D_{23} \\ D_{13} & D_{23} & D_{33} \\ D_{14} & D_{24} & D_{34} \\ D_{15} & D_{25} & D_{35} \\ D_{16} & D_{26} & D_{36} \end{bmatrix} $	$ \begin{bmatrix} D_{11} & D_{12} & D_{13} & D_{14} \\ D_{12} & D_{22} & D_{23} & D_{24} \\ D_{13} & D_{23} & D_{33} & D_{34} \\ D_{14} & D_{24} & D_{34} & D_{44} \\ D_{15} & D_{25} & D_{35} & D_{45} \\ D_{16} & D_{26} & D_{36} & D_{46} \\ \end{bmatrix} $	$ \begin{bmatrix} D_{11} & D_{12} & D_{13} & D_{14} & D_{15} \\ D_{12} & D_{22} & D_{23} & D_{24} & D_{25} \\ D_{13} & D_{23} & D_{33} & D_{34} & D_{35} \\ D_{14} & D_{24} & D_{34} & D_{44} & D_{45} \\ D_{15} & D_{25} & D_{35} & D_{45} & D_{55} \\ D_{16} & D_{26} & D_{36} & D_{46} & D_{56} \end{bmatrix} $	$ \begin{bmatrix} D_{11} & D_{12} & D_{13} & D_{14} & D_{15} & D_{16} \\ D_{12} & D_{22} & D_{23} & D_{24} & D_{25} & D_{26} \\ D_{13} & D_{23} & D_{33} & D_{34} & D_{35} & D_{36} \\ D_{14} & D_{24} & D_{34} & D_{44} & D_{45} & D_{46} \\ D_{15} & D_{25} & D_{35} & D_{45} & D_{55} & D_{56} \\ D_{16} & D_{26} & D_{36} & D_{46} & D_{56} & D_{66} \end{bmatrix} $

21 nezávislých konstant