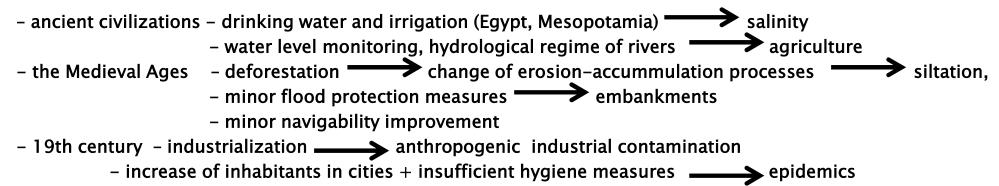

Hot Topics in Physical Geography Winter term 1/1 Ex + C, 5 ECTS

Water and Sediment Pollution in the Czech Republic Dr. Dagmar Chalupová


dagmar.chalupova@natur.cuni.cz

Content:

- Introduction water use and the development of pollution in the world and in Czechia
- Water resources in the Czech Republic general overview
- Sources of pollution point/non-point, linear sources
- Water, suspended matter and sediment quality parameters
 physical, inorganic, organic, radioactive, microbial pollution, saprobity, trophy
- Water, suspended matter and sediment monitoring
- Water, suspended matter, sediment, and biota quality database
- Water quality development in the Czech Republic
- Suspended matter and sediment pollution
- Sediment pollution risks old loads (deep sediments) case studies the Elbe River

Introduction - water use and the development of pollution in the world

- waste water treatment needed

- 20th century - anthropogenic contamination

Minamata disease 1956 – Japan methylmercury in wastewater from the Chisso Corporation's chemical factory (1932 to 1968) – mercury poisoning from fish

- neurological syndrome - ataxia, the cele weakness, damage to hearing and speech insanity, coma, death, congenital disease

Cholera epidemic in London 1854 - Soho, Broad Street

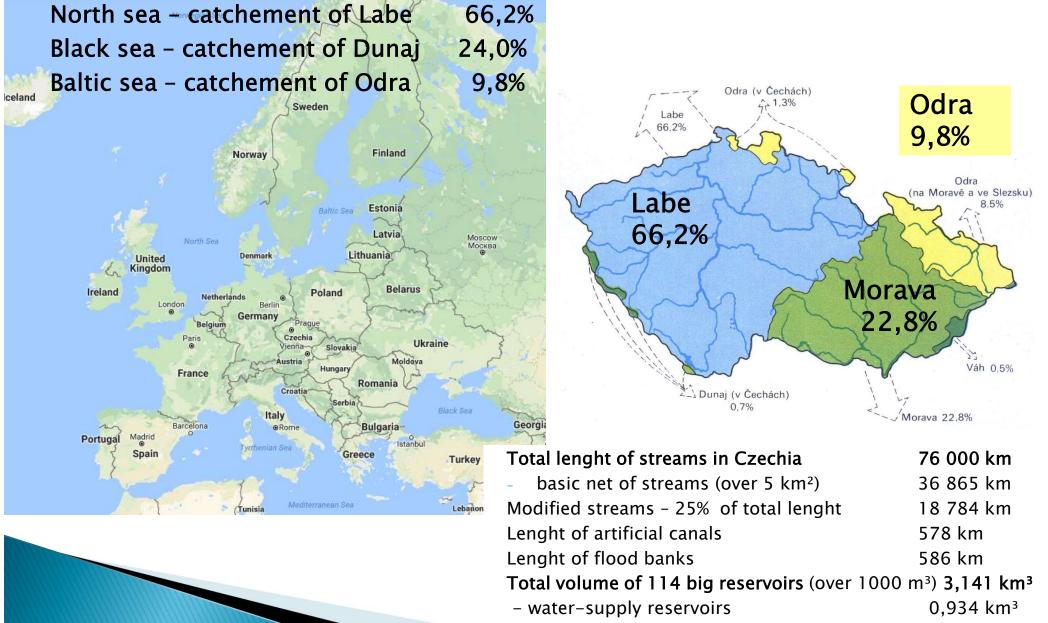
- Dr. John Snow
- spreading with water
- bacterium Vibrio cholerae

Introduction - water use and the development of pollution in Czechia

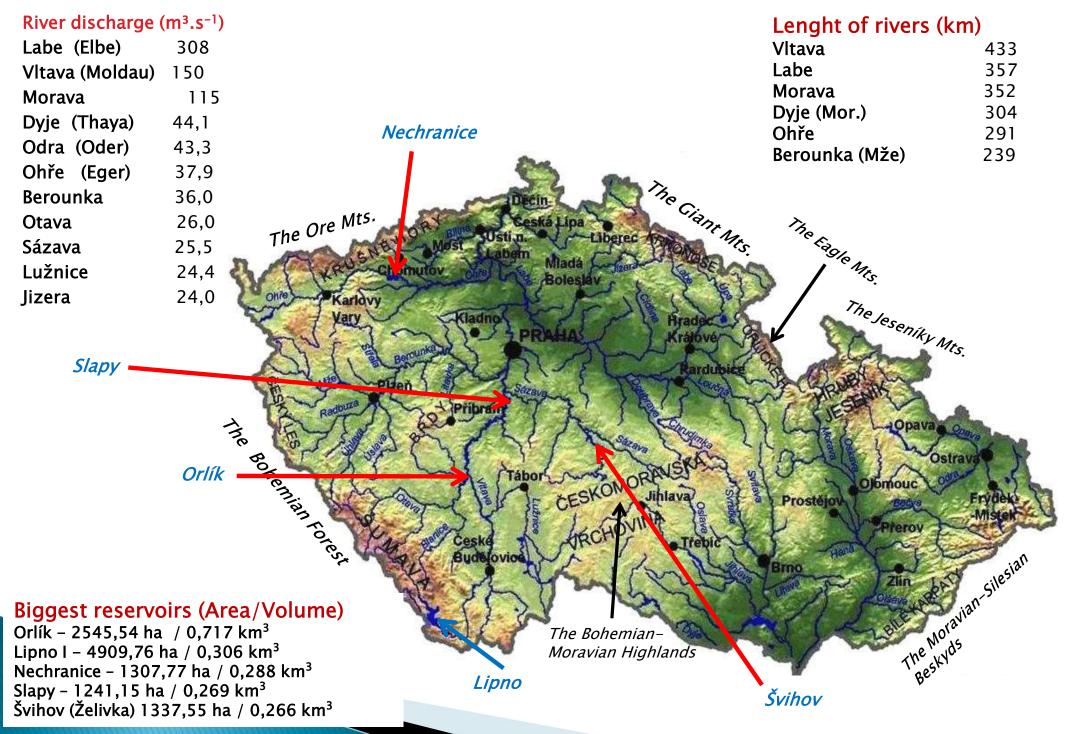
- 20th century increase of anthropogenic contamination especially 2nd half of the 20th century
 - industrial, agricultural and municipal pollution ------> maximum in the 1980s
 - environmentally unfriendly technologies, wastewater treatment missing, non-compliance
 - significant changes in water courses straightening, deepening faster drainage
 - construction of dams

 - increase of water consumption (1965 5,5 km³, 1990 21 km³)
 - use of underground resources
- - environmental technologies, end of fertilizers overuse, waste water treatment plants construction
 - price of water
 - decrease in water consumption (1993=343; 2000=245; 2010=138; 2016=132 l/capita/day)
 - international cooperation International Commission for the Protection of the Elbe River Protection (ICPER)
 - European measures
- end of the 20th century healthy ecosystems biodiversity, stability

Libiš catchwater – outflow from Spolana chemical plant



Retention reservoir Lhotka – Synthesia chemical plant


Water resources in the Czech Republic - general overview

- in central Europe in the source area of European rivers (we are on the roof of Europe)
- main European watershead contour 3 separate sea-drainage areas:

Total area of reservoirs (including small water bodies) 264 km²

Water resources in the Czech Republic - general overview

Pollution of aquatic ecosystems

Water quality

 naturally high concentrations - change of water quality is a result of natural processes = background concentrations higher

geology : mineralization of underground waters (spa), leaching of heavy metals in acid waters

Karlovy Vary – thermal and carbonic water – diseases of digestive tract

What influences water, suspended load and sediment quality

geomorphology: erosion–accumulation processes shape of terrain, length of slope,

Jáchymov – thermal and radioactive water (Rn) – musculoskeletal diseases

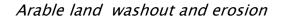
Confluence of the Morava River and the Dyje River (left), Hohenau

soil character: proportioin of clay and sand (permeability), physical character (possibility to bind nutrients, humus) **climate** : temperature (bacterial activity in decomposition), evaporation, precipitation – character of vegetation (interception), wind transport

Pollution of aquatic ecosystems

Sources of pollution

 anthropogenic pollution – change of water quality is a result of human activities agricultural, industrial or municipal production of pollution, waste waters etc.
 non-point sources of pollution:


atmospheric deposition, washout from arable land – fertilizers, insecticides

solution is not easy

Ouflow from Synthesia chemical plant

point sources of pollution:

localized outflow of raw or wastewaters industrial plants, water treatment plants easier to solve (new technologies...)

difuse sources of pollution:

number of small point sources of pollution, dumps, villages solution is not easy

line sources of pollution:

traffic - roads solution is not easy

Seepage of mining waters – Oloví, the Ore Mountains

Prague orbital motorway

Physical parameters

Temperature (°C): each 10 minutes, influences oxygen regime and biochemical processes, aquatic organisms, drinking water optimum 8-12°C thermal pollution – power plants – cooling waters - aquatic life

pH: logarithmic scale of acidity or basicity of water (reaction of water solutions), values between 0 and 14 $pH = -loq [H^+]$ acids release H⁺, alkalis accept H⁺ acidic substances <7, alkaline substances >7, neutral = 7 surface water 4.5 - 8.3 underground water 5,5 - 7,5 precipitation 5–6 influences chemical reactions, aquatic life measured with a glass electrode in situ or in a laboratory

Anthropogenic acidification releases of SO_2 and NO_x and other substances into the atmosphere *source: source: source: source: source:* acid rains

forest affected by acid rain (the Ore Mts.)

Content of suspended solids (mg.L¹): general water contamination, weight difference after evaporation at 105 $^{\circ}$ C Increases with pollution

Conductivity (mS.m⁻¹; $1S = \Omega^{-1}$): *ability (of water) to conduct an electric current, reciprocal of electric resistivity* depends linearly on total dissolved solids amount in water (cations and anions), temperature measured by determining the resistance of the solution between two flat electrodes separated by a fixed distance measurements in situ (conductometer) or in a laboratory Increases with pollution

> Water hardness(1°N): content of calcium and magnesium in water, $1^{\circ}N = 10mg$ CaO in 1 liter, resp. 7,2 mg MgO in 1 litre nowadays, analytical content of individual substances preferred

Smell: *tested by sense at 20°C and 60°C, 6 levels (grade 6 = not drinkable)* Pollution

Colour: given by the unabsorbed component of the visible spectrum of radiation + dissolved substances, pollution clear water in 1 m depth - blue colour

comparison with standards - Forel-Ule scale

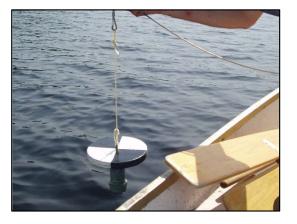
Turbidity (FTU): decrease of radiation intensity (340 nm) due to scattering and absorption caused by clay minerals, Fe and Mn oxides, bacteria, plankton dispersed in water increases with circulation, pollution 1 FTU = turbidity of suspension of 1.25 mg.L⁻¹ hydrazine sulfate and 12.5 mg. L⁻¹ hexamethylenetetraamine in 1 L of water

Transparency (cm):

Secchi disk, depth where it is not possible to distinguish between black and white Increases with pollution – eutrophication

• <u>Chemical parameters</u>

Oxygen: one of the most important parameters of water quality! influences biochemical processes (decomposition processes!) sources: diffusion from air, photosynthesis (day variability) higher values in unpolluted upper river courses with cascades ets. in lower river courses enhanced values due to planktonic photosynthesis (lakes) measurements in situ – oximeters: **dissolved oxygen (mg.L**⁻¹) or **saturation (%)** <u>Decrease:</u> higher temperature and salinity (inorganic pollution)


bacterial decomposition of organic material (industrial, agricultural and municipal pollution) oxidation of organic substance

oxidation of nitrite $(N-NO_2)$ and ammonium nitrogen $(N-NH_4)$ into nitrate nitrogen $(N-NO_3)$

(nitrate fertilizers, ammonium – chemical industry)

respiration

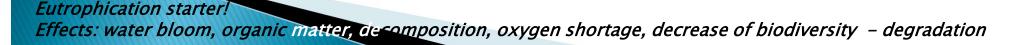
oxidation of upper sediment layers and products of anaerobic decomposition oxidation of pollutants!!! - decreases saturation significantly!!!

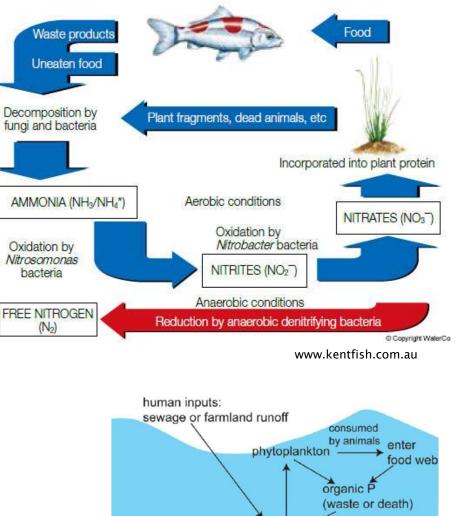
Temperature	Concentration (mg.L ⁻¹)									
0°C	14,621									
10 °C	11,288									
20 °C	9,092									
30 °C	7,559									

Main nutrients – N + PNitrogen compounds: *atmospheric* – N or a

Nitrogen compounds: $atmospheric - N_2$, $organic - N_{org}(sewage, slurry)$, $ammonium N-NH_4$, $nitrite N-NO_2$, $nitrate N-NO_3$, $cyanides CN^-$ **Biochemical transformations** -N cycle in aquatic systems::

ammonium nitrogen – fast oxidation


produced by microorganisms – decomposition processes indicates feacal pollution (8g per capita/day), toxic to fish sources: municipal and industrial waste waters immission standards:2,99 mg.L^{-1 natural waters} 0,5 mg.L^{-1 driking water} E.g. maximum concentration in outflow in 1998: Water treatment plant Děčín 363 mg.L⁻¹ <u>nitrite nitrogen</u> – fast oxidation, underground water


<u>nitrate nitrogen</u> – final product of nitrogenous organic compounds decomposition (nitrification) toxic to humans, especially infants (methaemoglobin) immission standards:50 mg.L^{-1 drinking water} 15 mg.L^{-1 baby water} sources: nitrogenous fertilizers (esp. industrial fertilizers-washout) Highest values autumn/winter – washout, melting!!! Low concentration – vegetation period (uptake) E.g. Forest brook : N-NO₃ 39 mg.L⁻¹ N-NH₄ 0,1 mg.L⁻¹ Sewer : N-NO₃ 4 mg.L⁻¹ N-NH₄ >20 mg.L⁻¹

cyanides - highly toxic, industrial pollution, energetics

Phosphorus compounds:

organic P (1,5g per capita/day), inorganic P-PO₄ solid phosphorus -95% of total P <u>phosphates</u> well soluble (uptake by organisms) sources: minerals and rocks, phosphate fertilizers, chemical and textile industry, detergents, sediments - releases in anoxic conditions: FePO₄ (Fe³⁺) dissolution after Fe reduction PO₄³⁻ (Fe²⁺) <u>total P</u> - all forms together 1,5 mg.L^{-1 drinking water}

POA

adsorbed to sediment

settling

Sulphur: *sulphates S–SO*₄ *–soluble, causes corrosion of concrete sources: geological subsoil, industrial waste waters, mining waters, atmospheric deposition (fossil fuels)* <u>*Acidification!*</u>

Calcium - precipitation of CaO at higher temperature - pipeline clogging Magnesium - corrosion of concrete, positive effects on human health Halogens -low concentration, elevated values = anthropogenic pollution <u>Chlorine</u> -sources: municipal waste waters (9 g of chlorides/capita/day), animal production, chemical industry and

traffic (wintersalting); bacterial disinfection of drinking water (minimum 0,05 mg.L⁻¹⁾ Fluorine – lack in drinking water may cause dental caries/excessive concentrations cause fluorosis

Heavy metals – density $> 5000 \text{ kg}.\text{m}^{-3}$

toxic for aquatic organism, in small amounts essential to humans chronic and acute toxicity, carcinogenicity bioaccumulation, adsorbed on suspended matter <u>accumulation in sediments!</u> - ENVIRONMENTAL RISKS

```
= OLD LOADS! = remobilization!!!
```

sources: geological subsoil, metalliferous areas, anthropogenic enrichment – mining, ore processing, chemical industry, fossil fuels, traffic

Pb sources: lead pipeline! Admixture for gasoline (not anymore), chemical industry, metallurgy, polygraphy, accumulators effects: brain damages

drinking water limit: 0,05 mg.L-1

Cd high toxicity, bioaccumulation, together with Zn sources: metalliferous areas, chemical industry, polygraphy, PVC, fossil fuels

effects: infertility, bone decalcification, carcinogenic

drinking water limit: 0,005 mg.L-1

Hg high toxicity, bioaccumulation,

sources: metalliferous areas, chemical industry – electrolysis, metalworking industry, fossil fuels, pesticides, fungicides, dental amalgam

effects: nervous, digestive, immune system, damages of organs, fetal development drinking water limit: 0,001 mg.L-1

> **Zn** toxicity for aquatic organisms, improvement of human immunity!!! sources: metalliferous areas, metalworking industry, accumulators, fossil fuels, drinking water limit: 5 mg.L⁻¹

Cu toxicity for aquatic organisms, essential to humans, not so high bioaccumulation sources: metalliferous areas, metalworking industry,

drinking water limit: 0,1 mg.L⁻¹

E.q. thousend times higher values

 C_0 – concretration day 0

Organic compounds

sources: natural leaching of humic substances from soil and sediments, municipal, agricultural and industrial pollution hundreds of substances _____ common determination <u>BOD</u>₅ (mg.L⁻¹) – biological oxygen demand decrease of oxygen concentration after 5 days due to decomposition of biodegradable organic matter

municipal waste waters, agricultural pollution – e.g. animal producuction, less commonly industrial pollution – e.g. Food production, paper mills etc.

 $C_{t} = C_{0} \cdot e^{-K_{1}t}$

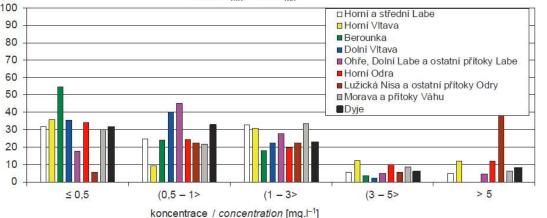
Ct - concentration after 5 days t = 5 davsK₁ - degradation constant

(Industrial wastewater 0,1 - 0,87)

E.g. maximum concentration in outflow in 1998: Bioferm Kolín (destillery and yeast factory) 964 mg.L⁻¹

unpolluted surface water $BOD_5 < 2.0 \text{ mg.}L^{-1}$

COD (mg.L⁻¹) – chemical oxygen demand,


decrease of oxygen concentration due to chemical oxidation of organic pollution using oxidizing agent: industrial pollution – e.g. persistent organic pollutants, municipal pollution – e.g. detergents

A. potassium dichromate $K_2Cr_2O_7$ – industrial wastewaters

B. potassium permanganate $KMnO_4$ – drinking water, surface waters

drinking water limit: 3,0 mg.L⁻¹ unpolluted surface water $COD_{Mn} < 6,0$ mg.L⁻¹ $COD_{Cr} < 15,0$ mg.L⁻¹ E.g. maximum concentration in outflow in 1992 : 100 počet vzorků / count of samples [%] Fruta Kralupy (food production, cannery 5701 mg.L⁻¹

 BOD_{5} (mg.L⁻¹) COD_{cr} (mg.L⁻¹) Waste water source Paper mills 500 1000 Breweries and malting 850 1700 plants Tanning industry 1000 2000 Sugar refinery 1000 1500 2200 3500 Yeast factory Fluid pig excrements 20000 40000

Langhammer, 2006: Water quality course, FaSci, UC

TOC (C_{orr}) – oxidation of all organic substances and production of CO_2 and H_2O

A. Wet combustion - strong oxidizing agent

B. Thermic combustion

determination of produced CO₂

 $BOD_5 \leq COD_{Mn} \leq COD_{Cr} \leq TOC$

unpolluted surface water TOC < 7.0 mg.L⁻¹

Comparison of organic pollution in Czech watersheds in 2015

CHSKMn / CODMn

Specific organic compounds = xenobiotics

sources: anthropogenic production – industrial wastes, industrial accidents (petroleum substances), pesticides – purposefully released in the environment toxic, carcinogenic, mutagenic Persistent (POPs – persistent organic pollutants), hardly soluble in water, soluble in fat, adsorbed on suspended matter accumulation in sediments! —> ENVIRONMENTAL RISKS = OLD LOADS! = remobilization!!!

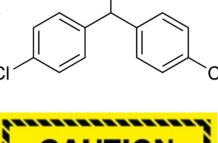
 Pesticides
 - herbicides (weed killers), insecticides (insects killers), fungicides (fungi killers)

 washout from areas of application, sediments, bioaccumulation

 Chlorinated organic compounds:

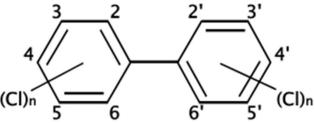
 DDT (dichlorodiphenyltrichloroethane (DDE, DDD)
 - persistent insecticide, bioaccumulation,

 food chain, carcinogenicity
 unpolluted surface water HCH < 3,0 ng.L⁻¹


 massive application all over the world (1950s, 1960s)
 In Czechoslovakia forbidden in 1975
 C

 Lindan (HCH - Y hexachlorocyclohexane)
 - persistent insecticide, forbidden
 C

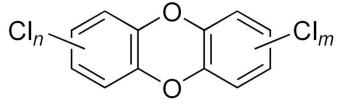
 HCB (Hexachlorobenzene) persistent fungicide, volatile, forbidden
 C


Organophosphorus pesticides: common nowadays *Nitrophenol pesticides*: herbicides, insecticides, toxic to nervous system of animals *Carbamides* :fertilizer, herbicide, not so toxic *Nitrogen heterocyclic pesticides*

PCB – polychlorinated biphenyls – 209 substance – especially 17 congeners very toxic non-flammable, insoluble in water, soluble in fat, electrical insulating, good heat conductivity production: dyes, plastics, asphalt, insulating coating sources: wastes, industrial accidents, black dumps bioaccumulation, persistence, accumulation in sediments!!! carcinogenicity, infertility, mutagenity, teratogenity, disruption of the hormonal system In Czechoslovakia forbidden in 1981 4,

CI CI \ | _CI

unpolluted surface water PCB < *5,0 ng.L*⁻¹ Sum of PCB 28, 51, 101, 138, 153, 180

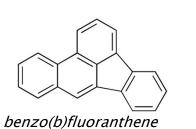

<u>AOX</u> - adsorbable organically bound halogens (mostly chlorinated) common parameter determinating total amount of AOX in water adsorbed on activated carbon large group of compounds: trichloromethane, 1,2-dichloromethane, tetrachloromethane chlorobenzene, dichlorobenzene, dioxins

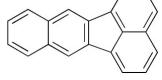
sources: paper and cellulose production, organic syntheses, synthetic fibres, coatings, cleaning agents, solvents, persistent, insoluble in water, soluble in fat – accumulation carcinogenic, nervous system damage, skin irritation

<u>Dioxins</u> (PCDD – polychlorinated dibenzodioxines, PCDF –polychlorinated dibenzofurans) – highly toxic and persistent, **suspended matter, sediments**, accumulation in fat (meat, milk, eggs!) <u>by–products</u> during production of pesticides (Agent Orange),

combustion processes

liver and skin damage, carcinogenicity, teratogenity

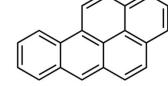



PAHs - polycyclic aromatic hydrocarbons

sources: <u>by-products</u> during combustion processes, asphalt, tar, aluminium production, coking plants, leaching or evaporating from materials containing PAU

white or yellow crystalline substances, insoluble in water, soluble in fat, volatile, persistent, long transport some PAHs carcinogenic, mutagenic, teratogenic

fluoranthene

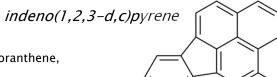


benzo(k)fluoranthene

unpolluted surface water PAU 5 < 10.0 ng.L⁻¹

benzo(g,h,i)perylene, indeno(1,2,3-c,d,)pyrene

Sum of fluoranthene, benzo(a)pyrene, benzo(b)fluoranthene,



unpolluted surface water $< 0.2 \ \mu g.L^{-1}$

benzo(a)pyrene

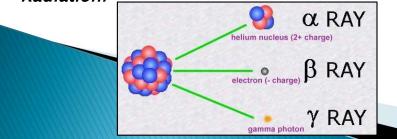
benzo(ghi)perylene

<u>Phenols</u>

chlorinated phenols - anthropogenic, toxic, bioaccumulation

<u>Tensides and detergents</u> – prevent gas exchange between water an the atmosphere, self-cleaning processes, foam

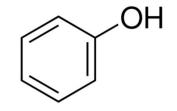
<u>Petroleum substances</u> – accidents (tankers), traffic, layer on water surface prevents gas exchange (50 L of oil = 1 km^2), respiration of aquatic organisms, bioaccumulation


Radioactivity

<u>Radioactivity (Bq.L⁻¹, Bq.kg⁻¹)</u> energetically unstable atomic nuclei emit radiation (particles or waves) to create more stable forms (new elements or

the same elements with a different number of nuclear particles – **ISOTOPES**

not detectable by senses


<u>-natural radioactivity</u> - produces by cosmic radiation in the atmosphere/geological subsoil <u>-artificial radioactivity</u> - nuclear reaction induced by bombing nuclei with other radiation/particles (neutrons -¹³⁷Cs) **Radiation:** _____

Danger: artificial radioactivity (nuclear weapons, nuclear power plants, nuclear waste repositories, bioaccumulation, food chain...

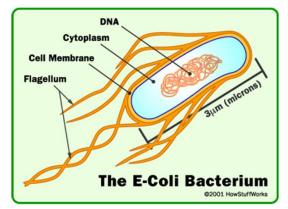
Measuremensts: α , β , γ *activities, uranium concentration (µg.L⁻¹)*

Relative Abundance of the Natural Isotopes

solope		%		- %		- %	Isotope		*		%		%	Isotope		%		%		%	Isotope		×.		%		*
1	н	99.985					61					Ni	1.140	121					Sb	57.36	181	Та	99.968				
2	н	0.015					62					Ni	3.634	122	Sn	4.63	Te	2.003			182			w	26.3		
3				0.000137			63	Qu	69.17					123			Te	0.908	Sb	42.64	183			w	14.3		
4			He :	99.999863			64			Zn	48.6	Ni	0.926	124	Sn	5.79	Te	4.816	Xe	0.10	184	Os	0.02	w	30.67		
5							65	Cu	30.83					125			Te	7.139			185					Rø	37.A
6					Li	7.5	66			Zn	27.9			126			Te	18.95	Xe	0.09	186	Os	1.58	w	28.6		
7					U	92.5	67			Zn	4.1			127	1	100					187	C6	1.6			Re	62.6
8							68			Zn	18.8			128			Te	31.69	Xe	1.91	188	Os	13.3				
9	Bei	100					69					Ga	60.108	129					Xe	26.4	189	Os	16.1				
10			B	19.9			70	Ge	21.23	Zn	0.6			130	Ba	0.106	Te	33.80	Xe	4.1	190	C6	26.4			Pt.	0.0
11			в	80.1			71					Ga	39.892	131					Xe	21.2	191			Ir	37.3		
12					С	98.90	72	Ge	27.66					132	Ba	0.101	-		Xe	26.9	192	Os	41.0			Pt.	0.7
13					С	1.10	73	Ge	7.73	-				133		0.447	C8	100			193			lr.	£2.7		-
14	N	99.643					74	Ge	35.94	Se	0.89			134	Ba	2.417			Xe	10.4	194					11	32.
15	N	0.366	-				75			~		As	100	135	B-a	6.592	-				195					Pt	33.
16			0	99.762			76	Ge	7.44	Se	9,36			136	Ba.	7,854	Ce	0.19	Xe	8.9	196	Hg	0.15			Pt	25.
17			0	0.038			77			Se	7.63			137	Ba	11.23		4.67			197		0.07	Acz.	100	5	~ .
18			0	0.200	-		78	Kr	0.35	Se	23.78	-		138	Ba	71.70	Ce	0.25	La	0.0902	198	Hg	9.97			Pt	72
19	b.i.e.	00.49			F	100	79	×-	0.04	8.0	10.51	Br	50.69	139			Ce	69.49	La	99.9098	199	Hg	16.87				
20	Ne	90.48					80	Kr	2.25	Se	49.61	P-	40.24				LN	88.48	Pr	100	200	Hg	23.10				
21	No	0.27					81	×-	11.5	e-		Br	49.31	141	N-I	27.13	C-	11.00	24	100	201	Hg	13.18				
22 23	Ne	9.25	Na	100			82 83	Kr Kr	11.6	Se	8,73			142	Nd Nd	27,13 12,18	Ce	11.08			202 203	Hg	29.85			TI	29.5
24			1963	100	Ma	78.99	84	Kr	57.0	Sr	0.56			144	Nd	23.80	Sm	3.1			204	Ho	6.87	Pb	1.4		28.5
25					Mg	10.00	85	N 1	51.0	-01	0.56	яь	72.165	145	Nd	8.30	om	3.1			205	ng.	0.07	10	1.4	TI	70.4
26					Ma	11.01	86	Kr	17.3	Sr	9.86	HQ.	72.105	146	Nd	17.19					206			Pb	24.1		10.4
27	AJ.	100			my		87	1.0	11.00	Sr	7.00	Rb	27.835	147	140	17.13	Sm	15.0			207			Pb	22.1		
28	~	100	Si	92.23			88			Sr	82.58	nu	£17,0000	148	Nd	5.76	Sm	11.3			208			Pb	52.4		
29			ŝi	4.67			89			-91	06.00	Y	100	149	140	0.70	Sm	13.8			209	8	100	-0	02.4		
30			Si	3.10			90	Zr	51.45					150	Nd	5.64	Sm	7.4			210		100				
31				5.10	P	100	91	Zr	11.22					151	140	5.04	011	1.74	Eu	47.8	211						
32	s	95.02			-		92	Zr	17.15	Mo	14.84			152	Gd	0.20	Sm	26.7			212						
33	ŝ	0.75					93					Nb	100	153					Eu	52.2	213						
34	s	4.21					94	Zr	17.38	Mo	9.25			154	Gd	2.18	Sm	22.7			214						
35			CI	75.77			95			Mo	15.92			155	Gd	14.80					215						
36	s	0.02			.Ar	0.337	96	Zr	2.90	Mo	16.68	Ru	5.52	156	Gd	20.47	Dy	0.05			216						
37			CI	24.23			97			Mo	9.55			157	Gd	15.65					217						
38					.Ar	0.063	98			Mo	24.13	Ru	1.88	158	Gd	24.84	Dy	0.10			218						
39	к	93.2581					99					Ru	12.7	159					Тb	100	219						
40	ĸ	0.0117	Ca	96.941	Ar	99.600	100			Mo	9.63	Ru	12.6	160	Gd	21.86	Dy	2.34			220						
41	к	6.7302					101					Ru	17.0	161			Dy	18.9			221						
42			Ca	0.647			102	Pd	1.02			Ru	31.6	162	Er	0.14	Dy	25.5			222						
43			Ga	0.135			103			Rh	100			163	-		Dy	24.9			223						
44			C#	2.066	-		104	Pd	11.14			Ba	18.7	164	Er	1.61	Dy	28.2			224						
45			_		Sc	100	105	Pd	22.33	_				165					Ho	100	225						
46	TI .	8.0	Ca	0.004			106	Pd	27.33	Cd	1.25			166	Er	33.6					225						
47	Ti	7.3					107					Ag	51.839	167	Er	22.95					227						
48	Ti	73.8	Ca	0.187			108	Pd	26.46	Cđ	0.89	-		168	Er	26.8	Yb	0.13	~		228						
49	TI	5.5			~		109			0.1		A9	48.161	169			2.6	0.05	Tm	100	229						
50	Ti	5.4	<u> </u>	0.250	Cr	4.345	110	Pd	11.72	Cd	12.49			170	Er	14.9	Yb	3.05			230	De	100				
51			×.	99.750	<i>n</i> -	43 740	111	8-	0.07	Cd	12.80			171			Yb	14.3			231	Pa	100				
52					Cr.	83,789	112	Sn	0.97	Cd	24.13			172			Yb	21.9			232	Th	100				
53	En	6.9			Cr Cr	9.501	113	80	0.66	Cd	12.22	lin	4.3	173			Yb	16.12		0.102	233		0.0055				
54	Fe	5.8	1.6-	100	Cr	2.365	114	Sn	0.66	Cđ	28.73	lies.	05.7	174	1	97.41	Yb	31.8	H1	0.162	234		0.0055				
55 56	Fe	91.72	Mn	100			115	Sn	0.34 14.53	04	7.49	lin	95.7	175	Lu	97.41 2.59	Yb	12.7	1.41	6.006	235 236	0	0.7200				
50							116	Sn So		Cđ	1.48			176	Lu	2.59	10	142.3	H1 H1	5.206							
	Fe	22			841	60.077	117	Sn	7.68					177					141	18.606	237		00.2745				
58 59	Fe	0.28	00	1.00	Ni	68.077	118	Sn	24.23											27,297	238		99.2745				
59 60			Co	100	Ni	28.223	119	Sn Sn	8.59 32.59	Ta	0.000			179		0.042	w	0.12	H1 H1	13.629 35.100							
					1961	6 10 6 6 5	120	1 00	36.30	Te	0.096			100	Ta	0.012		0.13	P 11	33.100							

"Isotopic Compositions of the Elements 1989" Pure Appl. Chem., Vol. 63, No. 7, pp. 991-1002, 1991. © 1991 JUPAC

PERKIN ELMER SCIEX


Microbiological and biological parematers

abundance of thermotolerant coliform bacteria (number of bacteria/volume) Escherichia coli – commonly in the lower intestine of warm-blooded organisms maintains bacterial balance in intestines and contributes to the synthesis of vitamins (K) indicates feacal pollution

drinking water = zero in 100ml

abundance of enterococci (number of bacteria/volume)

E. faecalis (90–95%) a E. faecium (5–10%) commonly in intestines indicates feacal pollution bacteral deseases

chlorophyll a (µg.L⁻¹)

- photosynthetic pigment, green colour, reflects the amount of photosynthetically active organisms in water (plants, cyanobacteria and some algae)

saprobity – water quality evaluation based on presence of certain species (macrozoobenthos) indicating certain level of water pollution

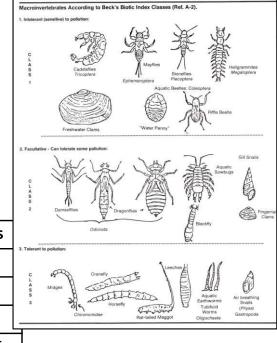
saprobic system comprises a wide range of organisms (indicators) – wide applications

presence of the indicator species corresponds to the level of organic pollution (BOD₅ values), oxygen concentrations,

abundance of bacteria and prevailing processes (aerobic/anaerobic)

various systems

e.g. Kolkwitz and Marsson (1902,08,09): I. Catarobity II. Oligosaprobity III. B-Mesosaprobity *IV. α* –*Mesosaprobity V. Polysaprobity*


Sládeček: catarobity, limnosaprobity, eusaprobity, transsaprobity

trophy – evaluation based on nutrient supply available for plant growth trophic levels correspond to certain contents of P (P total), N (N total), chlorophyll a, oxygen saturation and water transparency

(N)+P liminting factors – eutrophication rough estimations of biological condition of a water body various systems

	in the second		des.	Contract of	S.C.
Skipe			GL-		
				140	9.1.
Carlo Barrow		NE PL			THE R
No.		22			

N N				
Odonata	Trophic Class	Secchi disk depth (m)	P (tot) (mg.L ⁻¹)	Chl a (µg.L ⁻¹)
C Cranelly	Oligotrophic	> 8—4	0—12	0—2.6
Midges	Mesotrophic	4—2	12—24	2.6—20
Chironomidae	Eutrophic	2—0.5	24—96	20—56
(Carlson ,1996)	Hypereutrophic	0.5— < 0.25	96—384+	56—155+

State monitoring networks – state institutions

Czech Hydrometeorological Institute http://portal.chmi.cz/

- general network, selection of monitoring profiles, general databases
- forecasts, assessment *Hydrological yearbook*

River basins administrators:

- sampling, own sampling stations, analyses

- since 2012 general databases of suspended matter and sediment quality the Labe River Authority - http://www.pla.cz (Hradec Králové)14 976 km² the Morava River Authority - http://www.pmo.cz (Brno) 21 133 km² the Vltava River Authority http://www.pvl.cz (Praha) 27 580 km² the Ohře River Authority - http://www.poh.cz (Chomutov) 10 098 km² the Odra River Authority - http://www-pod.cz (Ostrava) 7 246 km²

Forests of the Czech Republic- http://www.lesycr.cz (Hradec Králové)

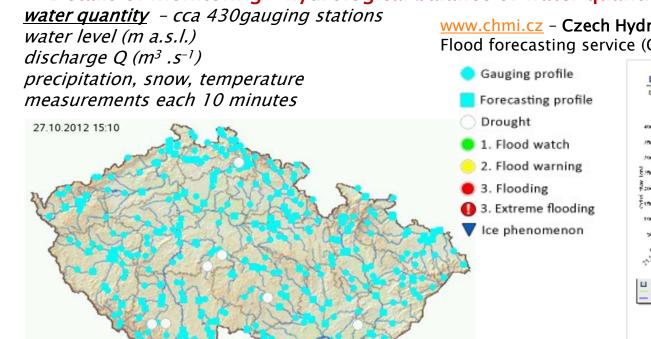
- 94 % of streams
- 6 % municipalities, national parks, military areas

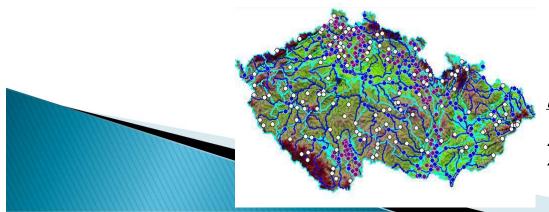
Purpose monitoring – e.g. monitoring after an industrial accident, remediation of polluted water bodies

T.G.M Water Research Institute ASCI CR, Research Institute for Soil and Water Conservation ASCI CR Czech Geological Survey, universities, environmental institutions, private environmental companies, restoration companies nongovernmental organisations etc...

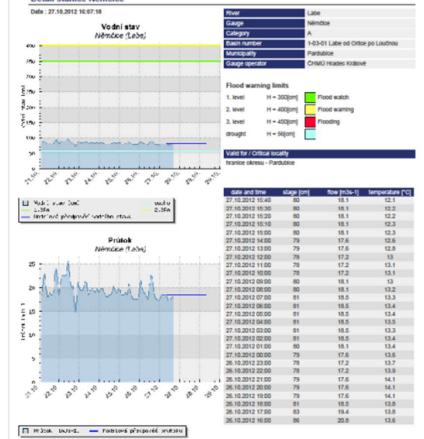
International monitoring programmes

e.g. International Commission for the Protection of the Elbe River international sampling stations on teh Elbe River (since 1993)




Messstellen des Internationalen Messprogramms Elbe (Stand: 2015) Měrné profily Mezinárodního programu měření Labe (stav: 2015)

Bearbeiter: JIII - Pundesanstalt für Gewässerkunde (BIG), Koblenz / Spotkový ústav hydrologický (BIG), Koblenz Zprásováno: Tschechisches Hydrometeorologisches Institut (CHMÚ), Prag / Český hydrometeorologický ústav (CHMÚ), Praha Tschechisches Hydrometeorologisches Institut (CHMÚ), Prag / Český hydrometeorologický ústav (CHMÚ), Praha


Details of monitoring - hydrological balance of water quantity and quality assessment

surface water quality sampling since 1963, 12× or 24× year, cca 200 sampling stations, cca 80 paramteters e.g. in 2015 resutls available from 1673 sampling points historically over 350 parameters)

www.chmi.cz - Czech Hydrometeorological Institute Flood forecasting service (CHMI) http://hydro.chmi.cz/hpps/index.php Gauging profile

underground water quality sampling 175 springs 221 shallow uderground water (Holocene) 267 deep hydrogeological wells

Details of monitoring – hydrological balance of water quantity and quality assessment suspended matter sampling

quantity since 1984, cca 38 sampling stations, concentration c (mg.L⁻¹), discharge of suspended matter Qsm (kg.s⁻¹), suspended matter runoff Gsm (t), specific suspended matter runoff (t.km⁻²) quality since 1999, 4× year, cca 47 sampling stations, 127 parameters granulometry (sedimentation techniques, laser) total C and P, fraction <20µm heavy metals

fraction <2 mm specific organic compounds

Suspended matter samplers

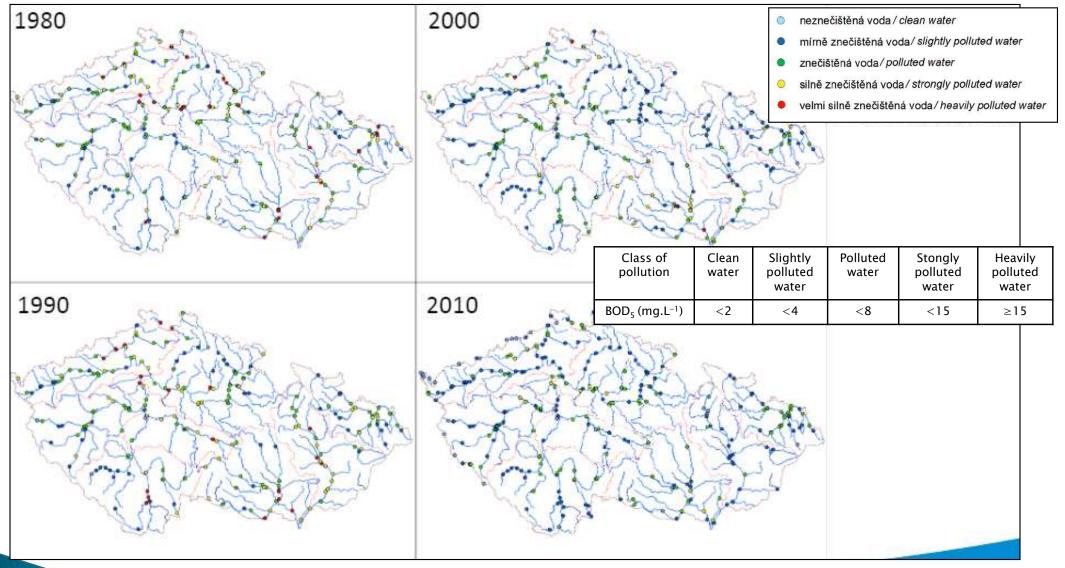
<u>sediment sampling</u>

since 1999, 2 × year, cca 47 sampling stations, 127 parameters surface riverbed sediments, granulometry (sieving, sedimentation techniques) fraction <20µm heavy metals, total C and P

fraction <2 mm specific organic compounds

Sediment samplers

biota 22 sampling stations, 1 × year biofilm, fish, juvenile fish, benthos - Dreissena polymorpha, Hydropsyche sp., Erpobdella sp., Gammarus sp.

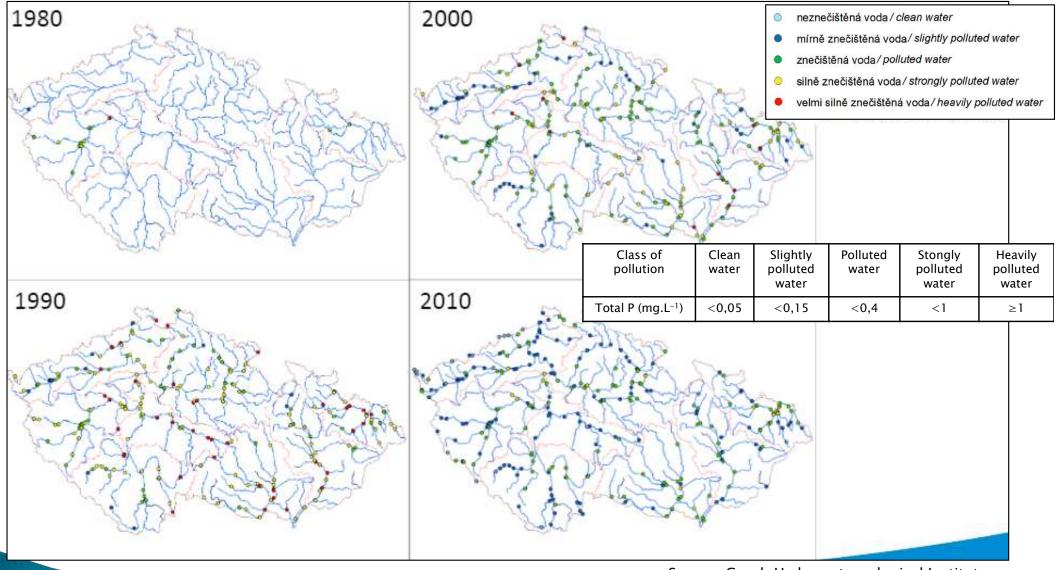

Laboratories of Povodí Labe s.p. (the Elbe River Authority) – analytical methods – suspended matter, sediments

PARAMETER_DETAIL	SOP	SOP-POPIS	unit
zinc	AK12B	Determination of metals and phosphorus ICP/OES - DIN 38406 - E22	mg/kg
nickel	AK12B	Determination of metals and phosphorus ICP/OES - DIN 38406 - E22	mg/kg
lead	AK12B	Determination of metals and phosphorus ICP/OES - DIN 38406 - E22	mg/kg
arsen	AK10B	Determination of metals AAS/ETA - ČSN EN ISO 15586	mg/kg
copper	AK12B	Determination of metals and phosphorus ICP/OES - DIN 38406 - E22	mg/kg
mercury	AK05B	Determination of mercury - ČSN 757440	mg/kg
cadmium	AK10B	Determination of metals and phosphorus ICP/OES - DIN 38406 - E22	mg/kg
chromium	AK12B	Determination of metals and phosphorus ICP/OES - DIN 38406 - E22	mg/kg
PCB congener 28	AO18B	Determination of PCB,OCP,PBDE,DEHP,mos.,pyrethr.,ch.alk.C10-13,C14-17-GC/MS/MS-ISO18856,22032	μg/kg
PCB congener 52	AO18B	Determination of PCB,OCP,PBDE,DEHP,mos.,pyrethr.,ch.alk.C10-13,C14-17-GC/MS/MS-ISO18856,22032	μg/kg
PCB congener 101	AO18B	Determination of PCB,OCP,PBDE,DEHP,mos.,pyrethr.,ch.alk.C10-13,C14-17-GC/MS/MS-ISO18856,22032	μg/kg
PCB congener 118	AO18B	Determination of PCB,OCP,PBDE,DEHP,mos.,pyrethr.,ch.alk.C10-13,C14-17-GC/MS/MS-ISO18856,22032	μg/kg
PCB congener 138	AO18B	Determination of PCB,OCP,PBDE,DEHP,mos.,pyrethr.,ch.alk.C10-13,C14-17-GC/MS/MS-ISO18856,22032	μg/kg
PCB congener 153	AO18B	Determination of PCB,OCP,PBDE,DEHP,mos.,pyrethr.,ch.alk.C10-13,C14-17-GC/MS/MS-ISO18856,22032	μg/kg
PCB congener 180	AO18B	Determination of PCB,OCP,PBDE,DEHP,mos.,pyrethr.,ch.alk.C10-13,C14-17-GC/MS/MS-ISO18856,22032	μg/kg
alfa-hexachlorcyklohexane	AO18B	Determination of PCB,OCP,PBDE,DEHP,mos.,pyrethr.,ch.alk.C10-13,C14-17-GC/MS/MS-ISO18856,22032	μg/kg
hexachlorobenzene	AO18B	Determination of PCB,OCP,PBDE,DEHP,mos.,pyrethr.,ch.alk.C10-13,C14-17-GC/MS/MS-ISO18856,22032	μg/kg
pentachlorobenzene	AO18B	Determination of PCB,OCP,PBDE,DEHP,mos.,pyrethr.,ch.alk.C10-13,C14-17-GC/MS/MS-ISO18856,22032	μg/kg
beta-hexachlorecyklohexane	AO18B	Determination of PCB,OCP,PBDE,DEHP,mos.,pyrethr.,ch.alk.C10-13,C14-17-GC/MS/MS-ISO18856,22032	μg/kg
gama-hexachlorecyklohexane	AO18B	Determination of PCB,OCP,PBDE,DEHP,mos.,pyrethr.,ch.alk.C10-13,C14-17-GC/MS/MS-ISO18856,22032	μg/kg
p,p-DDE	AO18B	Determination of PCB,OCP,PBDE,DEHP,mos.,pyrethr.,ch.alk.C10-13,C14-17-GC/MS/MS-ISO18856,22032	µg/kg
p,p-DDD	AO18B	Determination of PCB,OCP,PBDE,DEHP,mos.,pyrethr.,ch.alk.C10-13,C14-17-GC/MS/MS-ISO18856,22032	µg/kg
p,p-DDT	AO18B	Determination of PCB,OCP,PBDE,DEHP,mos.,pyrethr.,ch.alk.C10-13,C14-17-GC/MS/MS-ISO18856,22032	μg/kg
suma 6 cong. PAU	AO05B	Determination of PAU HPLC/FD - TNV 758055, EPA 8310	µg/kg
suma 5 cong. PAU	AO05B	Determination of PAU HPLC/FD - TNV 758055, EPA 8310	µg/kg
fenanthrene	AO05B	Determination of PAU HPLC/FD - TNV 758055, EPA 8310	μg/kg
anthracene	AO05B	Determination of PAU HPLC/FD - TNV 758055, EPA 8310	μg/kg
fluoranthene	AO05B	Determination of PAU HPLC/FD - TNV 758055, EPA 8310	μg/kg
pyrene	AO05B	Determination of PAU HPLC/FD - TNV 758055, EPA 8310	μg/kg
benzo(a)anthracene	AO05B	Determination of PAU HPLC/FD - TNV 758055, EPA 8310	μg/kg
chrysene	AO05B	Determination of PAU HPLC/FD - TNV 758055, EPA 8310	μg/kg
benzo(b)fluoranthen	AO05B	Determination of PAU HPLC/FD - TNV 758055, EPA 8310	µg/kg
benzo(k)fluoranthen	1	Determination of PAU HPLC/FD - TNV 758055, EPA 8310	μg/kg
benzo(a)pyrene		Determination of PAU HPLC/FD - TNV 758055, EPA 8310	μg/kg
benzo(g,h,i)perylene	AO05B	Determination of PAU HPLC/FD - TNV 758055, EPA 8310	μg/kg
indeno(1,2,3.c,d)pyrene		Determination of PAU HPLC/FD - TNV 758055, EPA 8310	μg/kg
hydrocarbons of C40		Determination of hydrocarbons C10-C40 GC/FID - ČSN EN 14039, ČSN EN ISO 16703	mg/kg
tributyltin		Bestimmung von Organo-Zinn Stoffe GC/MSD - ČSN EN ISO 23161	μg/kg

Water quality development in the Czech Republic

 \square **BOD**₅

- pollution assessment according to Czech State Norm 75 7221

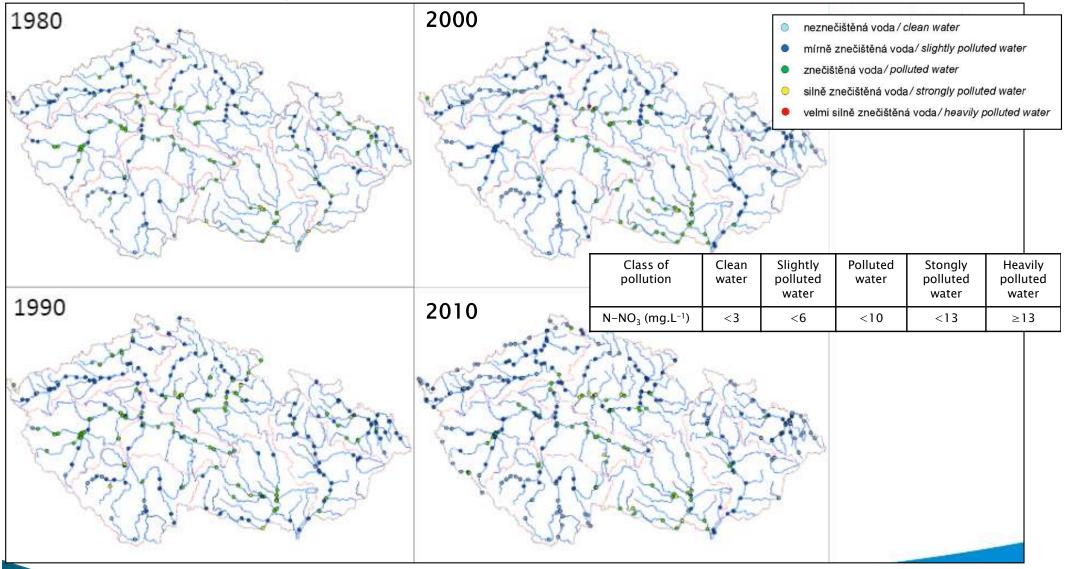


Source: Czech Hydrometeorological Institute

Water quality development in the Czech Republic

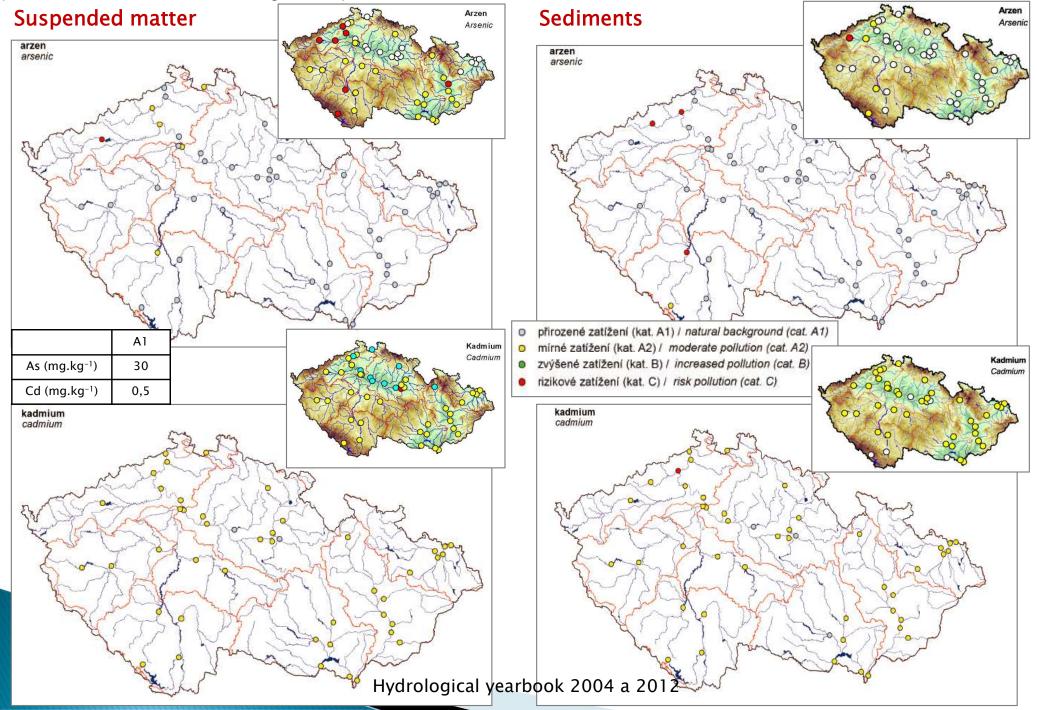
D Total Phosphorus

- pollution assessment according to Czech State Norm 75 7221

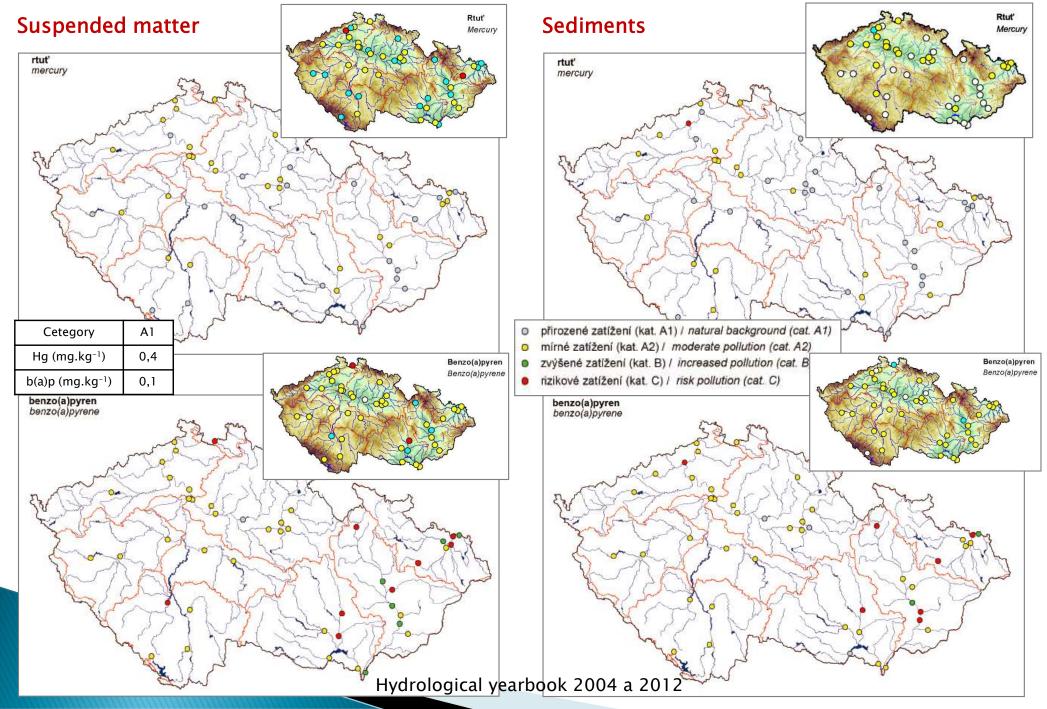


Source: Czech Hydrometeorological Institute

Water quality development in the Czech Republic


 \square N-NO₃

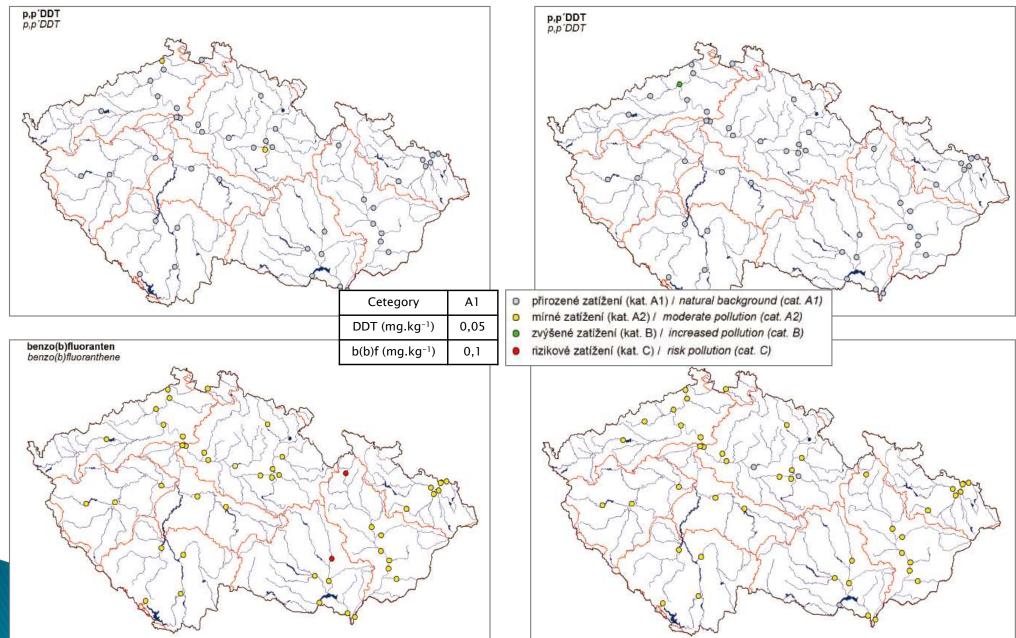
-pollution assessment according to C



Source: Czech Hydrometeorological Institute

Suspended matter and sediment pollution assessment according to the methodological instruction sof the Ministry of Environment of the Czech Republic "Kritéria znečištění zemin a podzemních vod" 1996 in the meaning of "Analýza rizik kontaminovaného území Nr.. 9/2005

Suspended matter and sediment pollution assessment according to the methodological instruction sof the Ministry of Environment of the Czech Republic "Kritéria znečištění zemin a podzemních vod" 1996 in the meaning of "Analýza rizik kontaminovaného území Nr.. 9/2005



Suspended matter and sediment pollution assessment according to the methodological instruction sof the Ministry of Environment of the Czech Republic "Kritéria znečištění zemin a

podzemních vod" 1996 in the meaning of "Analýza rizik kontaminovaného území Nr.. 9/2005

Suspended matter

Hvdrological yearbook 2012

Water, suspended matter, sediment and biota quality database

Arrow (CHMI) – surface water + ground water quality http://hydro.chmi.cz/isarrow/index.php data chice: district, region, year, catchment, water body, matrix (water, sediment, suspended matter, biota) etc...

Sediment pollution risks - old loads (deep sediments) case studies the Elbe River

Sediment sampling of deeper (older) layers

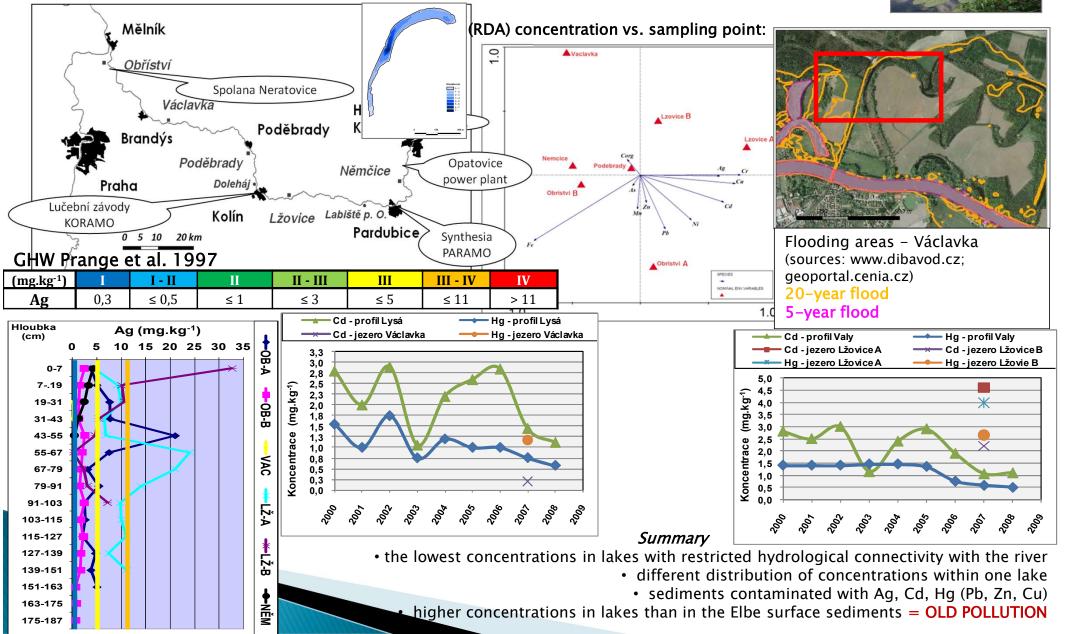
highest contamination of the Elbe River in the 2nd half of the 20th century anthropogenic pollution indicators:

 heavy metals, As, specific organic compounds = bound on suspended matter settling down at lower flow velocities layers of contaminated sediments

Where? = old meanders (artificially of naturally cut oxbow lakes) and floodplain How large is the spread of pollution? How far from the source of contamination? Influence of the hydrological connectivity with the river? Level of contamination? Change of concentration with the depth of sediment, respectively historical changes of pollution in the river?

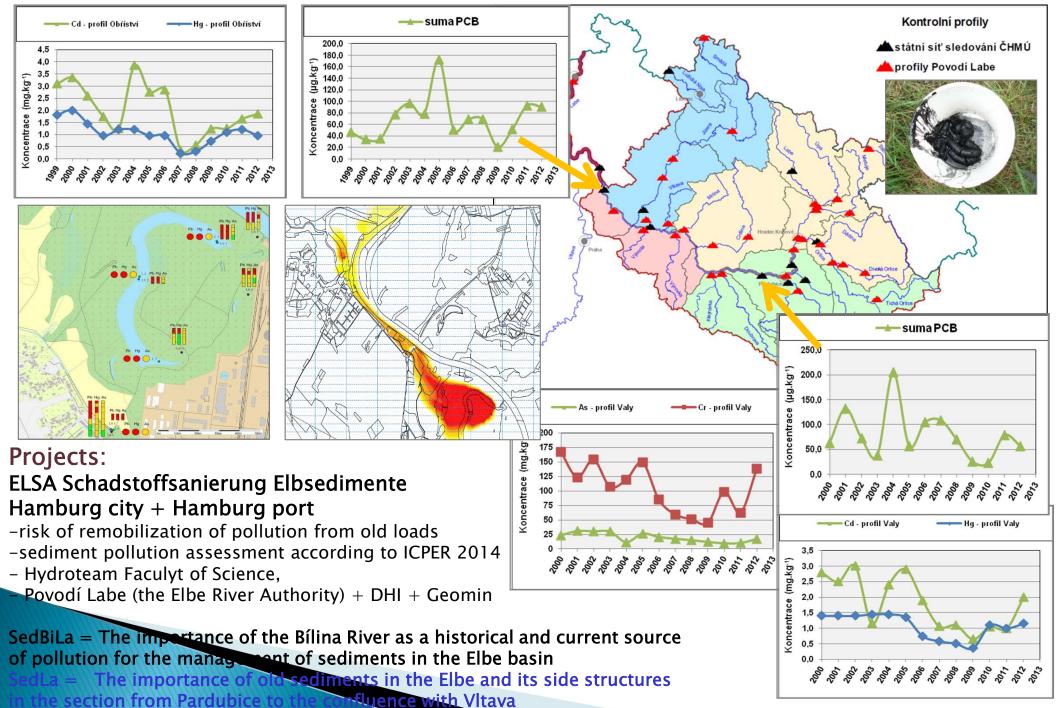
ENVIRONMENTAL RISK

Remobilization risk during floods
 Release of toxic substances from sediments
 (change of pH, redox potencial, presence of other substances e.g. solvents, salts...)


Suspended matter and sediment pollution risks - case studies

Research of oxbow lake sediments in the central part of the Czech Elbe River floodplain (since 2002)

Selected oxbow lakes differ in:


Age - separation from the main riverbed (historical maps)

Hydrological connectivity with the river – oxbow lakes connected by surface or only underground *Sources of polluition* – industrial, municipal, agricultural

Suspended matter and sediment pollution risks - case studies

Development of sediment contamination in the Elbe River

