Basic concepts and relations of statistical physics

I. Turek

Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic turek@ipm.cz

January 5, 2021

Lecture course 'Methods of statistical physics'

 teachers: dr. Ilja Turek, prof. Bedřich Velický, dr. Richard Korytár topics:- basic concepts and relations (~ 3 lectures, I.T.)
- mean-field approximation and classical Ising model (~ 3 lectures, I.T.)
- Kubo linear response and electron liquid (~ 3 lectures, I.T.)
- bosonic systems (Bose-Einstein condensation, magnons) (~ 3 lectures, B.V., R.K.)
excersize/classes:
- conducted by R.K.; the credit ('zápočet', issued by R.K.) is needed for admission to the (oral) examination

0 Statistical physics

- macroscopic systems with a large number of (interacting) particles
- both classical and quantum systems
- properties and quantities relevant for experiment
- systems under time-independent external conditions (equilibrium properties)
- systems under (well-defined) time-dependent perturbations (nonequilibrium properties)
- in this course: focus on theoretical techniques and condensed systems

1 Thermodynamic equilibrium, classical phase space and distribution functions

1.1 Thermodynamic equilibrium and time averages

- the state of a classical N-particle system is represented by a point $(p, q)=\left(\left\{p_{i}\right\}_{i=1}^{3 N},\left\{q_{i}\right\}_{i=1}^{3 N}\right)$ in the $6 N$-dimensional phase space
- dynamics of the system is given by the Hamiltonian $H(p, q)$ (time-independent) and the equations of motion

$$
\begin{equation*}
\frac{\mathrm{d} p_{i}(t)}{\mathrm{d} t}=-\frac{\partial H(p, q)}{\partial q_{i}}, \quad \frac{\mathrm{~d} q_{i}(t)}{\mathrm{d} t}=\frac{\partial H(p, q)}{\partial p_{i}} \tag{1}
\end{equation*}
$$

- their solution for specified initial conditions yields the trajectory $(p(t), q(t))$ in the phase space
- for any observable quantity $A=A(p, q)$, one can then define its time average \bar{A} as

$$
\begin{equation*}
\bar{A}=\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_{0}^{\tau} A(p(t), q(t)) \mathrm{d} t \tag{2}
\end{equation*}
$$

- for interacting many-particle systems: the time averages do not depend on the initial conditions
- assessment of the dependence of these time averages on the parameters (ξ) of the Hamiltonian represents one of the central problems of equilibrium statistical physics

$$
H=H(p, q ; \xi) \quad \Longrightarrow \quad \bar{A}=\bar{A}(\xi)
$$

1.2 Distribution functions and statistical averages

- the time averages can be replaced by statistical averages defined as

$$
\begin{equation*}
\langle A\rangle \equiv \bar{A}=\int A(p, q) \rho(p, q) \mathrm{d} \Gamma, \quad \mathrm{~d} \Gamma=\prod_{i=1}^{3 N} \mathrm{~d} p_{i} \mathrm{~d} q_{i} \tag{3}
\end{equation*}
$$

where $\rho(p, q)$ is the distribution function

- according to a general theory, the distribution function should be a function of the Hamiltonian only,

$$
\begin{equation*}
\rho(p, q)=\varphi(H(p, q)) \tag{4}
\end{equation*}
$$

where the function φ has to be specified

1.3 Microcanonical distribution and ergodicity

- for an isolated system with a prescribed total energy E, the microcanonical distribution is defined as

$$
\begin{equation*}
\rho(p, q ; E) \sim \delta(H(p, q)-E) \tag{5}
\end{equation*}
$$

which yields the statistical averages as functions of the total energy E (and of the other parameters ξ of the Hamiltonian):

$$
\begin{equation*}
\langle A\rangle(E) \equiv \bar{A}(E)=\frac{\int A(p, q) \delta(H(p, q)-E) \mathrm{d} \Gamma}{\int \delta(H(p, q)-E) \mathrm{d} \Gamma} \tag{6}
\end{equation*}
$$

- the microcanonical distribution, Eq. (5), can be justified by the so-called ergodic hypothesis: each trajectory of the system scans the whole isoenergetic surface $H(p, q)=E$

2 Classical canonical distribution

2.1 Canonical distribution and partition function

- for a system with thermal contact with its surroundings at temperature T, the canonical distribution function (Boltzmann statistics) is appropriate, namely,

$$
\begin{equation*}
\rho(p, q ; T) \sim \exp [-\beta H(p, q)], \quad \beta=\frac{1}{k_{\mathrm{B}} T}, \tag{7}
\end{equation*}
$$

where k_{B} is the Boltzmann constant. Here, we assume a fixed number of particles ($N=$ const).

- the value of $k_{\mathrm{B}}: 1 \mathrm{eV} \approx 11600 \mathrm{~K}$
- the simplest consequence is the Maxwell-Boltzmann distribution of velocities (or momenta) of individual particles (of mass m) in a gas (or a liquid or a solid):

$$
w\left(p_{x}\right) \sim \exp \left(-\frac{p_{x}^{2}}{2 m k_{\mathrm{B}} T}\right)
$$

- the normalized canonical distribution $\left(\int \rho \mathrm{d} \Gamma=1\right)$ requires knowledge of the partition function ('Zustandssumme')

$$
\begin{equation*}
Z(T)=\int \exp [-\beta H(p, q)] \mathrm{d} \Gamma \tag{8}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\rho(p, q ; T)=\frac{1}{Z(T)} \exp [-\beta H(p, q)] \tag{9}
\end{equation*}
$$

and general temperature-dependent statistical averages

$$
\begin{equation*}
\bar{A}(T)=\frac{1}{Z(T)} \int A(p, q) \exp [-\beta H(p, q)] \mathrm{d} \Gamma \tag{10}
\end{equation*}
$$

including, e.g., the internal energy of the system (for $A=H$)

$$
\begin{equation*}
U(T)=\bar{H}(T)=-\frac{\partial}{\partial \beta} \ln [Z(T)] \tag{11}
\end{equation*}
$$

2.2 Free energy and its derivatives

- the partition function can also be used to calculate the free energy $F(T)$:

$$
\begin{equation*}
Z(T)=\exp [-\beta F(T)], \quad F(T)=-k_{\mathrm{B}} T \ln [Z(T)], \tag{12}
\end{equation*}
$$

from which various expressions for the entropy follow, namely,

$$
\begin{gather*}
S(T)=-\frac{\partial F(T)}{\partial T} \tag{13}\\
S(T)=-k_{\mathrm{B}} \int \rho(p, q ; T) \ln [\rho(p, q ; T)] \mathrm{d} \Gamma \tag{14}
\end{gather*}
$$

[analogy to the mathematical entropy $\sigma=-\sum_{n} w_{n} \ln \left(w_{n}\right)$ related to probabilities $w_{n} \geq 0$ such that $\sum_{n} w_{n}=1$]

- $U(T), F(T)$, and $S(T)$ satisfy the Helmholtz relation

$$
\begin{equation*}
U(T)=F(T)+T S(T) \tag{15}
\end{equation*}
$$

and their derivatives define the heat capacity (specific heat)

$$
\begin{equation*}
C(T)=\frac{\partial U(T)}{\partial T}=T \frac{\partial S(T)}{\partial T}=-T \frac{\partial^{2} F(T)}{\partial T^{2}} \tag{16}
\end{equation*}
$$

- classical equipartition theorem \Longrightarrow heat capacity for
- ideal gases: $C(T)=(3 / 2) N k_{B}$
- solids (in harmonic approximation): $C(T)=3 N k_{\mathrm{B}}$ (the Dulong-Petit law)
- for an external parameter ξ entering the Hamiltonian, $H=H(p, q ; \xi) \Longrightarrow F=F(T ; \xi)$, and one can prove

$$
\begin{equation*}
\left\langle\frac{\partial H(\xi)}{\partial \xi}\right\rangle(T)=\frac{\partial F(T ; \xi)}{\partial \xi} \tag{17}
\end{equation*}
$$

- for a special (linear) ξ-dependence of H, i.e.,

$$
\begin{equation*}
H(p, q ; \xi)=H_{0}(p, q)+\xi B(p, q), \quad \xi \rightarrow 0 \tag{18}
\end{equation*}
$$

where the second term defines a small perturbation added to the unperturbed Hamiltonian H_{0}, we get

$$
\begin{equation*}
\langle B\rangle_{0}(T)=\partial F(T ; \xi=0) / \partial \xi \tag{19}
\end{equation*}
$$

where $\langle\ldots\rangle_{0}$ - average with the unperturbed Hamiltonian H_{0}

- for a system in an applied magnetic field b : the perturbed Hamiltonian is

$$
H(b)=H_{0}-b M
$$

where M is the total magnetic moment; its value in zero field is $(B \equiv-M, \quad \xi \equiv b \rightarrow 0)$:

$$
M_{0}(T)=-\frac{\partial F(T ; b=0)}{\partial b}
$$

2.3 Linear response and fluctuations

- the standard measure of fluctuations of a random real quantity A around its average value $\bar{A}=\langle A\rangle$ is defined as

$$
\begin{gather*}
(\Delta A)^{2}=\left\langle(A-\bar{A})^{2}\right\rangle=\overline{A^{2}}-(\bar{A})^{2} \tag{20}\\
(\Delta A)^{2}-\text { scatter of the quantity } A \\
\sqrt{(\Delta A)^{2}}-\text { root-mean-square (r.m.s.) deviation }
\end{gather*}
$$

- for the canonical distribution and $A=H$, one can prove

$$
\begin{equation*}
(\Delta H)^{2}(T)=k_{\mathrm{B}} T^{2} C(T) \tag{21}
\end{equation*}
$$

where $C(T)$ is the heat capacity; this is a direct relation between a macroscopic quantity C and a microscopic feature of the system $(\Delta H)^{2}$ (energy fluctuations around $U=\bar{H}$)

- if we consider dependence of the quantities on the system size (number of particles N), we find $U(T)=\bar{H}(T)$ and $C(T)$ proportional to N (extensive quantities), which yields

$$
\frac{\sqrt{(\Delta H)^{2}}}{\bar{H}} \propto \frac{1}{\sqrt{N}}
$$

i.e., the energy fluctuations in large systems $(N \rightarrow \infty)$ are negligible as compared to the internal energy (canonical distribution \sim microcanonical distribution)

- similarly, for correlation of fluctuations of two random quantities A and B (with respect to their average values \bar{A} and \bar{B}), we introduce the quantity

$$
\begin{equation*}
\langle(A-\bar{A})(B-\bar{B})\rangle=\overline{A B}-\bar{A} \bar{B} \tag{22}
\end{equation*}
$$

- let us consider a perturbation B added to the Hamiltonian H_{0} according to Eq. (18) $\left[H(\xi)=H_{0}+\xi B, \quad \xi \rightarrow 0\right]$; this perturbation induces a change in the statistical average of an observable A and it leads to the following linear-response coefficient

$$
\begin{equation*}
\kappa_{A B}(T)=\frac{\partial \bar{A}(T ; \xi=0)}{\partial \xi}, \tag{23}
\end{equation*}
$$

the so-called isothermic susceptibility

- one can prove the relation

$$
\begin{align*}
\kappa_{A B}(T) & =-\beta\langle(A-\bar{A})(B-\bar{B})\rangle_{0}(T) \\
& =-\beta\left[\langle A B\rangle_{0}-\langle A\rangle_{0}\langle B\rangle_{0}\right](T) \tag{24}
\end{align*}
$$

where all averages on the r.h.s. are taken in the unperturbed system

- this relation connects the linear-response coefficient $\kappa_{A B}(T)$ (a macroscopic property) with the correlation of fluctuations in the unperturbed system (a microscopic quantity)
- a special form of Eq. (24) for $B=-A$ yields

$$
\begin{equation*}
\kappa_{A,-A}(T)=\beta(\Delta A)_{0}^{2}(T)=\beta\left[\left\langle A^{2}\right\rangle_{0}-\langle A\rangle_{0}^{2}\right](T), \tag{25}
\end{equation*}
$$

which explains, e.g., the Curie law for magnetic susceptibilities at low temperatures: $\kappa(T) \sim T^{-1}$

3 Elementary quantum statistics

3.1 Quantum-mechanical and statistical averaging

- basic statements of the quantum theory:
- the pure state of a quantum-mechanical system is defined by a state vector $|\Psi\rangle$ in the Hilbert space
- a real physical observable is represented by a Hermitian operator A
- the quantum-mechanical average of the quantity (operator) A in the state $|\Psi\rangle$ is given by

$$
\begin{equation*}
\bar{A}\{\Psi\}=\langle\Psi| A|\Psi\rangle \tag{26}
\end{equation*}
$$

where we assume the state vector normalized to unity, $\langle\Psi \mid \Psi\rangle=1$

- if the system can be prepared in several states $\left|\Psi_{i}\right\rangle$ with probabilities $p_{i}\left(i=1,2, \ldots ; p_{i} \geq 0, \quad \sum_{i} p_{i}=1\right)$, the quantum-mechanical and statistical average is given by

$$
\begin{align*}
\langle A\rangle & =\bar{A}=\sum_{i} p_{i}\left\langle\Psi_{i}\right| A\left|\Psi_{i}\right\rangle=\sum_{i} p_{i} \operatorname{Tr}\left\{A\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right|\right\} \\
& =\operatorname{Tr}\left\{A\left[\sum_{i} p_{i}\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right|\right]\right\}=\operatorname{Tr}(A \rho) \tag{27}
\end{align*}
$$

where Tr denotes the trace and where we introduced the density matrix (statistical operator) ρ given by

$$
\begin{equation*}
\rho=\sum_{i}\left|\Psi_{i}\right\rangle p_{i}\left\langle\Psi_{i}\right| \tag{28}
\end{equation*}
$$

which is a positive-definite Hermitian operator

- (two technical notes)
- within the Dirac formalism, a ket-vector $|\phi\rangle$ and a bra-vector $\langle\chi|$ define a linear operator $|\phi\rangle\langle\chi|$; its action is given by $|\psi\rangle \mapsto|\phi\rangle\langle\chi \mid \psi\rangle$; its trace equals the scalar product of both vectors:

$$
\operatorname{Tr}(|\phi\rangle\langle\chi|)=\langle\chi \mid \phi\rangle
$$

- for any operators X and $Y: \operatorname{Tr}(X Y)=\operatorname{Tr}(Y X)$
- the density matrix satisfies relations

$$
\begin{equation*}
\operatorname{Tr}(\rho)=1, \quad \operatorname{Tr}\left(\rho^{2}\right) \leq 1 \tag{29}
\end{equation*}
$$

where the former one is a direct consequence of $\left\langle\Psi_{i} \mid \Psi_{i}\right\rangle=1$ and $\sum_{i} p_{i}=1$; the equality sign in the latter relation is encountered only for pure states

3.2 Canonical distribution and partition function

- the canonical distribution (Boltzmann statistics) for a system with Hamiltonian H and at temperature T is defined as

$$
\begin{equation*}
\rho(T)=\frac{1}{Z(T)} \exp (-\beta H) \tag{30}
\end{equation*}
$$

where the partition function $Z(T)$ is given by

$$
\begin{equation*}
Z(T)=\operatorname{Tr}[\exp (-\beta H)] \tag{31}
\end{equation*}
$$

- if the eigenvalues and normalized eigenvectors of H are denoted by E_{n} and $|n\rangle(n=1,2, \ldots)$, we get for $Z(T)$

$$
\begin{equation*}
Z(T)=\sum_{n} \exp \left(-\beta E_{n}\right) \tag{32}
\end{equation*}
$$

for the density matrix ρ and its matrix elements $\rho_{m n}$

$$
\begin{align*}
\rho(T) & =\sum_{n}|n\rangle w_{n}(T)\langle n|, \quad w_{n}(T)=\frac{\exp \left(-\beta E_{n}\right)}{Z(T)}, \\
\rho_{m n}(T) & =\langle m| \rho(T)|n\rangle=w_{n}(T) \delta_{m n}, \tag{33}
\end{align*}
$$

and for the general quantum-mechanical and statistical average (with matrix elements $A_{m n}=\langle m| A|n\rangle$)

$$
\begin{gather*}
\langle A\rangle(T)=\bar{A}(T)=\operatorname{Tr}[A \rho(T)]=\sum_{n} w_{n}(T)\langle n| A|n\rangle \\
=\sum_{n} w_{n}(T) A_{n n}=\frac{1}{Z(T)} \sum_{n} \exp \left(-\beta E_{n}\right) A_{n n}, \tag{34}
\end{gather*}
$$

which has the form of Eq. (27) [$\bar{A}=\sum_{i} p_{i}\left\langle\Psi_{i}\right| A\left|\Psi_{i}\right\rangle$]

- (a technical note)
if we know all eigenvalues $E_{n}(n=1,2, \ldots)$ and normalized eigenvectors $|n\rangle$ of the Hamiltonian H, we can write its spectral representation

$$
H=\sum_{n} E_{n}|n\rangle\langle n|=\sum_{n}|n\rangle E_{n}\langle n| ;
$$

this representation enables one to extend an arbitrary function $f($.$) of a real variable to the same function of the operator H$:

$$
f(H)=\sum_{n} f\left(E_{n}\right)|n\rangle\langle n|=\sum_{n}|n\rangle f\left(E_{n}\right)\langle n| ;
$$

this definition can be used, e.g., for $f(H)=\exp (-\beta H)$

3.3 Free energy and its derivatives

- from the partition function $Z(T)$, the internal energy $U(T)$, the free energy $F(T)$, the entropy $S(T)$, and the heat capacity $C(T)$ can be obtained in the same way as in the classical case; this leads, e.g., to expressions

$$
\begin{align*}
S(T) & =-k_{\mathrm{B}} \operatorname{Tr}\{\rho(T) \ln [\rho(T)]\} \\
& =-k_{\mathrm{B}} \sum_{n} w_{n}(T) \ln \left[w_{n}(T)\right] \tag{35}
\end{align*}
$$

- the relations involving derivatives with respect to an external parameter ξ of the Hamiltonian $H(\xi)$ require more effort in the quantum case, since the operators $H(\xi)$ and $\partial H(\xi) / \partial \xi$ do not commute in general
- it can be proved that [the quantum version of Eq. (17)]

$$
\left\langle\frac{\partial H(\xi)}{\partial \xi}\right\rangle(T)=\frac{\partial F(T ; \xi)}{\partial \xi}
$$

while in the special case of a linear ξ-dependence

$$
\begin{equation*}
H(\xi)=H_{0}+\xi B, \quad \xi \rightarrow 0 \tag{36}
\end{equation*}
$$

we get [the quantum version of Eq. (19)]

$$
\langle B\rangle_{0}(T)=\frac{\partial F(T ; \xi=0)}{\partial \xi}
$$

- for the proof, we define $u(\beta, \xi)=\exp [-\beta H(\xi)]$, for which we get (the Bloch equation):

$$
\begin{equation*}
\frac{\partial u(\beta, \xi)}{\partial \beta}+H(\xi) u(\beta, \xi)=0, \quad u(0, \xi)=1 \tag{37}
\end{equation*}
$$

and for $v(\beta, \xi)=\partial u(\beta, \xi) / \partial \xi$, we get:

$$
\begin{equation*}
\frac{\partial v(\beta, \xi)}{\partial \beta}+H(\xi) v(\beta, \xi)=-\frac{\partial H(\xi)}{\partial \xi} u(\beta, \xi), \quad v(0, \xi)=0 \tag{38}
\end{equation*}
$$

The last equation can be solved with an Ansatz

$$
v(\beta, \xi)=u(\beta, \xi) c(\beta, \xi)=\exp [-\beta H(\xi)] c(\beta, \xi)
$$

and with initial condition $c(\beta, \xi)=0$:

$$
\exp [-\beta H(\xi)] \frac{\partial c(\beta, \xi)}{\partial \beta}=-\frac{\partial H(\xi)}{\partial \xi} \exp [-\beta H(\xi)]
$$

$$
\begin{align*}
c(\beta, \xi)= & -\int_{0}^{\beta} \exp [\alpha H(\xi)] \frac{\partial H(\xi)}{\partial \xi} \exp [-\alpha H(\xi)] \mathrm{d} \alpha \\
v(\beta, \xi)= & -\exp [-\beta H(\xi)] \\
& \times \int_{0}^{\beta} \exp [\alpha H(\xi)] \frac{\partial H(\xi)}{\partial \xi} \exp [-\alpha H(\xi)] \mathrm{d} \alpha \tag{39}
\end{align*}
$$

From this result, we get:

$$
\begin{aligned}
&-\frac{\partial Z(T, \xi)}{\partial \xi}=-\frac{\partial}{\partial \xi} \operatorname{Tr}[u(\beta, \xi)]=-\operatorname{Tr}[v(\beta, \xi)] \\
&=\operatorname{Tr}\{ \exp [-\beta H(\xi)] \\
&\left.\times \int_{0}^{\beta} \exp [\alpha H(\xi)] \frac{\partial H(\xi)}{\partial \xi} \exp [-\alpha H(\xi)] \mathrm{d} \alpha\right\}
\end{aligned}
$$

$$
\begin{align*}
& =\int_{0}^{\beta} \operatorname{Tr}\left\{\exp [(\alpha-\beta) H(\xi)] \frac{\partial H(\xi)}{\partial \xi} \exp [-\alpha H(\xi)]\right\} \mathrm{d} \alpha \\
& =\int_{0}^{\beta} \operatorname{Tr}\left\{\exp [-\beta H(\xi)] \frac{\partial H(\xi)}{\partial \xi}\right\} \mathrm{d} \alpha \\
& =\beta \operatorname{Tr}\left\{\exp [-\beta H(\xi)] \frac{\partial H(\xi)}{\partial \xi}\right\} \\
& =\beta Z(T, \xi)\left\langle\frac{\partial H(\xi)}{\partial \xi}\right\rangle(T) . \tag{40}
\end{align*}
$$

This means

$$
-\frac{\partial Z(T, \xi)}{\partial \xi}=\beta Z(T, \xi)\left\langle\frac{\partial H(\xi)}{\partial \xi}\right\rangle(T)
$$

from which the quantum version of Eq. (17) follows immediately.

3.4 Linear response and fluctuations

- the quantum version of the relation between the energy fluctuation $(\Delta H)^{2}(T)$ and the heat capacity $C(T)$ is the same as in the classical case, Eq. (21):

$$
(\Delta H)^{2}(T)=k_{\mathrm{B}} T^{2} C(T)
$$

- for a perturbation B added to the Hamiltonian H_{0} [$H(\xi)=H_{0}+\xi B, \quad \xi \rightarrow 0$], the linear response of an observable A leads to the susceptibility defined by Eq. (23):

$$
\kappa_{A B}(T)=\frac{\partial \bar{A}(T ; \xi=0)}{\partial \xi}
$$

- the result can be written using the eigenvectors $|n\rangle$ and eigenvalues E_{n} of the Hamiltonian H_{0} and with $A_{m n}=\langle m| A|n\rangle, \quad B_{n m}=\langle n| B|m\rangle$ as

$$
\begin{align*}
\kappa_{A B}(T)= & \sum_{m n} A_{m n} B_{n m} \frac{w_{m}(T)-w_{n}(T)}{E_{m}-E_{n}} \\
& +\beta\langle A\rangle_{0}(T)\langle B\rangle_{0}(T), \tag{41}
\end{align*}
$$

where in the first term, one has to use (L'Hospital's rule)

$$
\begin{equation*}
\frac{w_{m}(T)-w_{n}(T)}{E_{m}-E_{n}}=-\beta w_{m}(T) \quad \text { for } E_{m}=E_{n} \tag{42}
\end{equation*}
$$

This proves the importance of the ground-state degeneracy for the Curie-like behavior of the low-temperature susceptibility $\left[\kappa(T) \sim T^{-1}\right]$

- (an example) for a 2-dimensional Hilbert space, we take $H_{0}=\Delta \sigma_{z}$ with a real constant Δ, and $A=-B=\sigma_{x}$, where

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) ;
$$

we get

$$
\kappa(T)= \begin{cases}\tanh (\beta \Delta) / \Delta & \text { for } \Delta \neq 0 \\ \beta & \text { for } \Delta=0\end{cases}
$$

- the proof of Eq. (41) starts from

$$
\begin{align*}
& \bar{A}(T ; \xi)=Z^{-1}(T, \xi) \operatorname{Tr}\left\{A \exp \left[-\beta\left(H_{0}+\xi B\right)\right]\right\} \\
& Z(T, \xi)=\operatorname{Tr}\left\{\exp \left[-\beta\left(H_{0}+\xi B\right)\right]\right\} \tag{43}
\end{align*}
$$

and it employs

$$
\begin{align*}
& v(\beta)=\left.\frac{\partial}{\partial \xi} \exp \left[-\beta\left(H_{0}+\xi B\right)\right]\right|_{\xi=0} \\
& \quad=-\exp \left(-\beta H_{0}\right) \int_{0}^{\beta} \exp \left(\alpha H_{0}\right) B \exp \left(-\alpha H_{0}\right) \mathrm{d} \alpha \tag{44}
\end{align*}
$$

which is a special case of Eq. (39). This yields:

$$
\begin{equation*}
-\frac{\partial Z(T, \xi=0)}{\partial \xi}=\beta \operatorname{Tr}\left[B \exp \left(-\beta H_{0}\right)\right]=\beta Z(T, 0)\langle B\rangle_{0}(T) \tag{45}
\end{equation*}
$$

see also Eq. (40). The last two relations are used in calculation of the ξ-derivative of $\bar{A}(T ; \xi)$, Eq. (43), which yields

$$
\begin{align*}
& \kappa_{A B}(T)=-Z^{-1}(T, 0) \\
& \quad \times \operatorname{Tr}\left\{A \int_{0}^{\beta} \exp \left[(\alpha-\beta) H_{0}\right] B \exp \left(-\alpha H_{0}\right) \mathrm{d} \alpha\right\} \\
& \quad+\beta\langle A\rangle_{0}(T)\langle B\rangle_{0}(T) . \tag{46}
\end{align*}
$$

The first term is evaluated in the orthonormal basis of eigenvectors of H_{0} which leads to the final result, Eq. (41).

- in special cases, when A or B commutes with H_{0}, Eq. (46) yields

$$
\kappa_{A B}(T)=-\beta\left[\langle A B\rangle_{0}-\langle A\rangle_{0}\langle B\rangle_{0}\right](T)
$$

which is the quantum version of the classical relation, Eq. (24)

- a direct relation between the linear-response coefficient $\kappa_{A B}(T)$ and the correlation of fluctuations cannot be given. In the special case of $B=-A$, one obtains

$$
\begin{align*}
\kappa_{A,-A}(T)= & -\sum_{m n}\left|A_{m n}\right|^{2} \frac{w_{m}(T)-w_{n}(T)}{E_{m}-E_{n}} \\
& -\beta\langle A\rangle_{0}^{2}(T) \tag{47}
\end{align*}
$$

For the fraction in the first term, one can use inequality [a consequence of $\tanh (x) / x \leq 1$ valid for arbitrary real x]

$$
\begin{equation*}
-\frac{w_{m}(T)-w_{n}(T)}{E_{m}-E_{n}} \leq \frac{\beta}{2}\left[w_{m}(T)+w_{n}(T)\right] \tag{48}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\kappa_{A,-A}(T) \leq \beta(\Delta A)_{0}^{2}(T)=\beta\left[\left\langle A^{2}\right\rangle_{0}-\langle A\rangle_{0}^{2}\right](T) \tag{49}
\end{equation*}
$$

instead of the classical equality relation, Eq. (25).
The difference is due to quantum-mechanical fluctuations.
linear harmonic oscillator: ground-state wavefunction

4 Systems with varying particle number

- exchange of particles between the studied system and its surroundings can be treated both within classical and quantum statistics by using the concept of chemical potential μ (in analogy to exchange of energy treated by means of temperature T); here we focus on the quantum case

4.1 Quantum grandcanonical distribution

- we consider systems with identical particles of one kind; basis vectors in the N-particle $(N \geq 1)$ Hilbert space $\mathcal{H}^{(N)}$:

$$
\begin{equation*}
\mathcal{S}\left\{\left|\lambda_{1}\right\rangle \otimes\left|\lambda_{2}\right\rangle \otimes \ldots \otimes\left|\lambda_{N}\right\rangle\right\} \tag{50}
\end{equation*}
$$

where $\lambda_{1}, \ldots, \lambda_{N}$ run over values of an index λ labelling the orthogonal basis vectors $|\lambda\rangle$ in the one-particle Hilbert space $\mathcal{H}^{(1)}$ and where \mathcal{S} denotes a symmetrization (for bosons) or antisymmetrization (for fermions - 'Slater determinant'); the complete Hilbert space (Fock space) is

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}^{(0)} \oplus \mathcal{H}^{(1)} \oplus \mathcal{H}^{(2)} \oplus \ldots \equiv \sum_{N=0}^{\infty} \oplus \mathcal{H}^{(N)} \tag{51}
\end{equation*}
$$

where $\mathcal{H}^{(0)}$ - the one-dimensional subspace of vacuum

- the identity operator I and the operator of the total number of particles N are given by

$$
\begin{align*}
I & =I^{(0)} \oplus I^{(1)} \oplus I^{(2)} \oplus I^{(3)} \oplus \ldots \equiv \sum_{N=0}^{\infty} \oplus I^{(N)} \\
N & =I^{(1)} \oplus 2 I^{(2)} \oplus 3 I^{(3)} \oplus \ldots \equiv \sum_{N=0}^{\infty} \oplus N I^{(N)} \tag{52}
\end{align*}
$$

where $I^{(N)}$ - the identity operator in the Hilbert space $\mathcal{H}^{(N)}$

- operators that do not change the number of particles have a similar structure. Here we confine ourselves only to such operators, i.e., the Hamiltonian is

$$
\begin{equation*}
H=H^{(0)} \oplus H^{(1)} \oplus H^{(2)} \oplus \ldots \equiv \sum_{N=0}^{\infty} \oplus H^{(N)} \tag{53}
\end{equation*}
$$

and observables can be reduced to

$$
\begin{equation*}
A=A^{(0)} \oplus A^{(1)} \oplus A^{(2)} \oplus \ldots \equiv \sum_{N=0}^{\infty} \oplus A^{(N)} \tag{54}
\end{equation*}
$$

- (a comment)
by using the creation and annihilation operators $\left(a_{\lambda}^{+}, a_{\lambda}\right)$, further operators conserving the number of particles are

$$
M=\sum_{\lambda^{\prime} \lambda} V_{\lambda^{\prime} \lambda} a_{\lambda^{\prime}}^{+} a_{\lambda}+\sum_{\lambda^{\prime} \nu^{\prime} \lambda \nu} W_{\lambda^{\prime} \nu^{\prime} \lambda \nu} a_{\lambda^{\prime}}^{+} a_{\nu^{\prime}}^{+} a_{\lambda} a_{\nu}+\ldots
$$

where $V_{\lambda^{\prime} \lambda}, W_{\lambda^{\prime} \nu^{\prime} \lambda \nu}, \ldots$ are some constants, i.e., no terms with different number of creation and annihilation operators are present (such as, e.g., $a_{\lambda}^{+}, a_{\lambda} a_{\nu}, a_{\kappa}^{+} a_{\lambda}^{+} a_{\nu}, \ldots$)

- the density matrix of the grandcanonical distribution for the Hamiltonian H, Eq. (53), is defined by

$$
\begin{equation*}
\rho(T, \mu)=\frac{1}{\mathcal{Z}(T, \mu)} \exp [\beta(\mu N-H)] \tag{55}
\end{equation*}
$$

where μ denotes the chemical potential and where the grandcanonical partition function is equal to

$$
\begin{equation*}
\mathcal{Z}(T, \mu)=\operatorname{Tr}\{\exp [\beta(\mu N-H)]\} \tag{56}
\end{equation*}
$$

- the average value of the observable A, Eq. (54), is

$$
\begin{equation*}
\langle A\rangle(T, \mu)=\bar{A}(T, \mu)=\operatorname{Tr}[A \rho(T, \mu)] \tag{57}
\end{equation*}
$$

- in more details:

$$
\begin{aligned}
\rho(T, \mu) & =\frac{1}{\mathcal{Z}(T, \mu)} \exp [\beta(\mu N-H)]=\sum_{N=0}^{\infty} \oplus \rho^{(N)}(T, \mu) \\
& =\frac{1}{\mathcal{Z}(T, \mu)} \sum_{N=0}^{\infty} \oplus \exp (\beta \mu N) \exp \left[-\beta H^{(N)}\right] \\
\mathcal{Z}(T, \mu) & =\operatorname{Tr}\{\exp [\beta(\mu N-H)]\}= \\
& =\sum_{N=0}^{\infty} \exp (\beta \mu N) \operatorname{Tr}^{(N)}\left\{\exp \left[-\beta H^{(N)}\right]\right\} \\
& =\sum_{N=0}^{\infty} \exp (\beta \mu N) \sum_{n} \exp \left[-\beta E_{n}^{(N)}\right]
\end{aligned}
$$

where the trace $\operatorname{Tr}^{(N)}$ refers to the subspace $\mathcal{H}^{(N)}$ and where $E_{n}^{(N)}$ denote eigenvalues of the Hamiltonian $H^{(N)}$,
and for the average of the observable A :

$$
\begin{aligned}
& \bar{A}(T, \mu)=\operatorname{Tr}[A \rho(T, \mu)]=\sum_{N=0}^{\infty} \operatorname{Tr}^{(N)}\left[A^{(N)} \rho^{(N)}(T, \mu)\right] \\
& =\frac{1}{\mathcal{Z}(T, \mu)} \sum_{N=0}^{\infty} \exp (\beta \mu N) \operatorname{Tr}^{(N)}\left\{A^{(N)} \exp \left[-\beta H^{(N)}\right]\right\} \\
& =\frac{1}{\mathcal{Z}(T, \mu)} \sum_{N=0}^{\infty} \exp (\beta \mu N) \sum_{n} \exp \left[-\beta E_{n}^{(N)}\right] A_{n n}^{(N)},
\end{aligned}
$$

where $A_{n n}^{(N)}$ are diagonal matrix elements of $A^{(N)}$ between the normalized eigenvectors $|N, n\rangle$ of the eigenvalue $E_{n}^{(N)}$:

$$
A_{n n}^{(N)}=\langle N, n| A^{(N)}|N, n\rangle
$$

- in analogy to the canonical distribution, following relations are valid in the grandcanonical case $[U(T, \mu)=\bar{H}(T, \mu)]$:

$$
\begin{equation*}
U(T, \mu)-\mu \bar{N}(T, \mu)=-\frac{\partial}{\partial \beta} \ln [\mathcal{Z}(T, \mu)] \tag{58}
\end{equation*}
$$

where $\bar{N}(T, \mu)$ denotes the average number of particles,

$$
\begin{align*}
\mathcal{Z}(T, \mu) & =\exp [-\beta \Omega(T, \mu)] \\
\Omega(T, \mu) & =-k_{\mathrm{B}} T \ln [\mathcal{Z}(T, \mu)] \tag{59}
\end{align*}
$$

where $\Omega(T, \mu)$ denotes the grandcanonical potential,

$$
\begin{equation*}
S(T, \mu)=-\frac{\partial \Omega(T, \mu)}{\partial T}, \tag{60}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{N}(T, \mu)=-\frac{\partial \Omega(T, \mu)}{\partial \mu} \tag{61}
\end{equation*}
$$

and a generalization of the Helmholtz relation, namely,

$$
\begin{equation*}
U(T, \mu)=\Omega(T, \mu)+T S(T, \mu)+\mu \bar{N}(T, \mu) \tag{62}
\end{equation*}
$$

- for the Hamiltonian depending on an external parameter ξ, we get

$$
\begin{equation*}
\left\langle\frac{\partial H(\xi)}{\partial \xi}\right\rangle(T, \mu)=\frac{\partial \Omega(T, \mu ; \xi)}{\partial \xi} \tag{63}
\end{equation*}
$$

as a counterpart of Eq. (17)

- for the fluctuation of the number of particles N, we get

$$
\begin{equation*}
(\Delta N)^{2}(T, \mu)=k_{\mathrm{B}} T \frac{\partial \bar{N}(T, \mu)}{\partial \mu} \tag{64}
\end{equation*}
$$

as a counterpart of Eq. (21)

for large systems:
grandcanonical distribution \sim canonical distribution

4.2 Systems of identical non-interacting particles

- systems of non-interacting particles: ideal gases
- in the quantum case: identical particles are indistinguishable
- two different classes (according to symmetry of wavefunction Ψ with respect to permutation of two particles)
- bosons: Ψ symmetric, integer spin (photons, phonons, magnons, ...)
- fermions: Ψ antisymmetric (Pauli exclusion principle), half-integer spin (electrons, protons, neutrons, ...)

4.2.1 One-particle Hamiltonians and occupation numbers

- let us consider all orthonormalized eigenvectors $|\lambda\rangle$ and eigenvalues E_{λ}, where $\lambda=1,2, \ldots, \mathcal{M}$, of a one-particle Hamiltonian $H^{(1)}$, i.e.,

$$
\begin{equation*}
H^{(1)}=\sum_{\lambda=1}^{\mathcal{M}}|\lambda\rangle E_{\lambda}\langle\lambda| \equiv H . \tag{65}
\end{equation*}
$$

The individual contributions to the full Hamiltonian [$\sum_{N} \oplus H^{(N)}$, Eq. (53)] for a non-interacting system are

$$
\begin{align*}
H^{(0)} & =0, \quad H^{(1)}=H, \quad H^{(2)}=H \otimes I+I \otimes H, \\
H^{(3)} & =H \otimes I \otimes I+I \otimes H \otimes I+I \otimes I \otimes H, \ldots \tag{66}
\end{align*}
$$

where I denotes the one-particle identity operator.

- the eigenstates of the full Hamiltonian are then given by Eq. (50); we rewrite them in terms of the so-called occupation numbers n_{λ}, so that

$$
\begin{equation*}
\mathcal{S}\left\{\left|\lambda_{1}\right\rangle \otimes\left|\lambda_{2}\right\rangle \otimes \ldots \otimes\left|\lambda_{N}\right\rangle\right\}=\left|\left\{n_{\lambda}\right\}_{\lambda=1}^{\mathcal{M}}\right\rangle \tag{67}
\end{equation*}
$$

where the (anti)symmetrization \mathcal{S} includes normalization to unity and where

$$
\begin{align*}
\text { for bosons : } & n_{\lambda} \in\{0,1,2, \ldots\} \\
\text { for fermions : } & n_{\lambda} \in\{0,1\} \tag{68}
\end{align*}
$$

- the total number of particles in a particular eigenstate, Eq. (67), can be expressed as

$$
\begin{equation*}
N=\sum_{\lambda=1}^{\mathcal{M}} n_{\lambda} \tag{69}
\end{equation*}
$$

and the corresponding eigenvalue of the full Hamiltonian is

$$
\begin{equation*}
E_{\left\{n_{\lambda}\right\}}^{(N)}=\sum_{\lambda=1}^{\mathcal{M}} n_{\lambda} E_{\lambda} \tag{70}
\end{equation*}
$$

- the occupation numbers n_{λ} can also be considered as operators; the full non-interacting Hamiltonian, Eq. (66), can be then written as

$$
\begin{equation*}
\sum_{N=0}^{\infty} \oplus H^{(N)}=\sum_{\lambda=1}^{\mathcal{M}} E_{\lambda} n_{\lambda} \tag{71}
\end{equation*}
$$

and the operator of the total number of particles, Eq. (52), is given by Eq. (69) [$N=\sum_{\lambda=1}^{\mathcal{M}} n_{\lambda}$]

- (a comment on second quantization) in terms of the creation $\left(a_{\lambda}^{+}\right)$and annihilation $\left(a_{\lambda}\right)$ operators, the occupation numbers (as operators) are

$$
n_{\lambda}=a_{\lambda}^{+} a_{\lambda}
$$

the operator of the total number of particles is

$$
N=\sum_{\lambda=1}^{\mathcal{M}} n_{\lambda}=\sum_{\lambda=1}^{\mathcal{M}} a_{\lambda}^{+} a_{\lambda}
$$

and the full non-interacting Hamiltonian can be expressed as

$$
\sum_{N=0}^{\infty} \oplus H^{(N)}=\sum_{\lambda=1}^{\mathcal{M}} E_{\lambda} n_{\lambda}=\sum_{\lambda=1}^{\mathcal{M}} E_{\lambda} a_{\lambda}^{+} a_{\lambda}
$$

4.2.2 One-particle distribution functions

- the $\mathcal{Z}(T, \mu)$, Eq. (56), can be evaluated exactly due to the linear dependence of N, Eq. (69), and of energy eigenvalues, Eq. (70), on the occupation numbers n_{λ}; this yields

$$
\begin{align*}
\mathcal{Z}(T, \mu) & =\sum_{\left\{n_{\lambda}\right\}} \exp \left[\beta \sum_{\lambda=1}^{\mathcal{M}} n_{\lambda}\left(\mu-E_{\lambda}\right)\right] \\
& =\prod_{\lambda=1}^{\mathcal{M}} \sum_{n_{\lambda}} \exp \left[\beta\left(\mu-E_{\lambda}\right) n_{\lambda}\right] \\
& =\prod_{\lambda=1}^{\mathcal{M}}\left\{1 \mp \exp \left[\beta\left(\mu-E_{\lambda}\right)\right]\right\}^{\mp 1}, \tag{72}
\end{align*}
$$

where the upper (lower) sign refers to bosons (fermions). Note that the bosonic case requires $\mu<E_{\lambda}$ for all λ.

- the grandcanonical potential is then

$$
\begin{equation*}
\Omega(T, \mu)= \pm k_{\mathrm{B}} T \sum_{\lambda=1}^{\mathcal{M}} \ln \left\{1 \mp \exp \left[\beta\left(\mu-E_{\lambda}\right)\right]\right\} \tag{73}
\end{equation*}
$$

from which the average values of the occupation numbers can be obtained with use of Eq. (63) (ξ-derivative, $\xi=E_{\lambda}$):

$$
\begin{align*}
\left\langle n_{\lambda}\right\rangle(T, \mu) & =\frac{\partial \Omega\left(T, \mu ;\left\{E_{\nu}\right\}\right)}{\partial E_{\lambda}} \\
& =\frac{1}{\exp \left[\beta\left(E_{\lambda}-\mu\right)\right] \mp 1} \equiv f_{\lambda}(T, \mu) \tag{74}
\end{align*}
$$

This is the well-known Bose-Einstein or Fermi-Dirac distribution function.

- Bose-Einstein / Fermi-Dirac distribution functions

$$
\begin{equation*}
f(E ; T, \mu)=\frac{1}{\exp [\beta(E-\mu)] \mp 1} \tag{75}
\end{equation*}
$$

4.2.3 One-particle density matrix

- consider a one-particle operator A as an observable, so that

$$
\begin{equation*}
A^{(1)}=\sum_{\lambda, \nu=1}^{\mathcal{M}}|\lambda\rangle A_{\lambda \nu}\langle\nu| \equiv A, \quad A_{\lambda \nu}=\langle\lambda| A|\nu\rangle, \tag{76}
\end{equation*}
$$

while the other terms $A^{(N)}$ in the full observable [$\sum_{N} \oplus A^{(N)}$, Eq. (54)] are constructed according to Eq. (66) for the Hamiltonian $\left[\sum_{N} \oplus A^{(N)}=\sum_{\lambda \nu} A_{\lambda \nu} a_{\lambda}^{+} a_{\nu}\right]$

- the quantum-mechanical average of the full observable $\sum_{N} \oplus A^{(N)}$ in a particular eigenvector, Eq. (67), is equal to

$$
\begin{equation*}
\left\langle\left\{n_{\lambda}\right\}_{\lambda=1}^{\mathcal{M}}\right| \sum_{N=0}^{\infty} \oplus A^{(N)}\left|\left\{n_{\lambda}\right\}_{\lambda=1}^{\mathcal{M}}\right\rangle=\sum_{\lambda=1}^{\mathcal{M}} n_{\lambda} A_{\lambda \lambda} \tag{77}
\end{equation*}
$$

and its quantum-mechanical and statistical average is

$$
\begin{equation*}
\bar{A}(T, \mu)=\sum_{\lambda=1}^{\mathcal{M}} A_{\lambda \lambda}\left\langle n_{\lambda}\right\rangle(T, \mu)=\sum_{\lambda=1}^{\mathcal{M}} A_{\lambda \lambda} f_{\lambda}(T, \mu) \tag{78}
\end{equation*}
$$

with an obvious physical meaning

- the last result can be given another form, namely,

$$
\begin{equation*}
\bar{A}(T, \mu)=\sum_{\lambda=1}^{\mathcal{M}}\langle\lambda| A|\lambda\rangle f_{\lambda}(T, \mu)=\operatorname{Tr}[A f(T, \mu)] \tag{79}
\end{equation*}
$$

where the trace refers to the one-particle Hilbert space and where we introduced a one-particle density matrix

$$
\begin{equation*}
f(T, \mu)=\sum_{\lambda=1}^{\mathcal{M}}|\lambda\rangle f_{\lambda}(T, \mu)\langle\lambda| \tag{80}
\end{equation*}
$$

4.2.4 One-particle linear response

- for a one-particle Hamiltonian H_{0}, its perturbation B $\left[H(\xi)=H_{0}+\xi B\right]$, and an observable A, the linear response yields the susceptibility, defined with constant T and μ as

$$
\begin{equation*}
\kappa_{A B}(T, \mu)=\frac{\partial \bar{A}(T, \mu ; \xi=0)}{\partial \xi} \tag{81}
\end{equation*}
$$

- its value, expressed in the basis defined by the eigenvectors and eigenvalues $\left(E_{\lambda}\right)$ of the unperturbed Hamiltonian H_{0}, is

$$
\begin{equation*}
\kappa_{A B}(T, \mu)=\sum_{\lambda, \nu=1}^{\mathcal{M}} A_{\lambda \nu} B_{\nu \lambda} \frac{f_{\lambda}(T, \mu)-f_{\nu}(T, \mu)}{E_{\lambda}-E_{\nu}} \tag{82}
\end{equation*}
$$

where for $E_{\lambda}=E_{\nu}$, one has to use (L'Hospital's rule)

$$
\begin{equation*}
\frac{f_{\lambda}(T, \mu)-f_{\nu}(T, \mu)}{E_{\lambda}-E_{\nu}}=\left.\frac{\partial f(E ; T, \mu)}{\partial E}\right|_{E=E_{\lambda}} \tag{83}
\end{equation*}
$$

- the proof of Eq. (82) is based on relation (T and μ omitted)

$$
\begin{equation*}
\bar{A}=\operatorname{Tr}[A f(H)]=\int_{-\infty}^{\infty} \operatorname{Tr}[A \delta(E-H)] f(E) \mathrm{d} E \tag{84}
\end{equation*}
$$

on the well-known limit

$$
\begin{equation*}
\delta(x)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{\mathrm{i}}{2 \pi}\left(\frac{1}{x+\mathrm{i} \varepsilon}-\frac{1}{x-\mathrm{i} \varepsilon}\right) \tag{85}
\end{equation*}
$$

and on the resolvent $G(z)$ of a Hamiltonian H, defined for a complex energy variable z by

$$
\begin{equation*}
G(z)=(z-H)^{-1} . \tag{86}
\end{equation*}
$$

This yields

$$
\begin{equation*}
\delta(E-H)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{\mathrm{i}}{2 \pi}[G(E+\mathrm{i} \varepsilon)-G(E-\mathrm{i} \varepsilon)] \tag{87}
\end{equation*}
$$

and [due to the analyticity of $G(z)] \bar{A}$ as a complex integral

$$
\begin{equation*}
\bar{A}=\frac{1}{2 \pi \mathrm{i}} \int_{C} \operatorname{Tr}[A G(z)] f(z) \mathrm{d} z \tag{88}
\end{equation*}
$$

where the complex integration path C is shown below [double line - one-particle spectrum, crosses - poles of $f(z)$]

- the resolvents $G(z)$ (of H) and $G_{0}(z)$ (of H_{0}) are related by the Dyson equation

$$
\begin{equation*}
G(z)=G_{0}(z)+G_{0}(z) \xi B G(z), \tag{89}
\end{equation*}
$$

from which we get

$$
\begin{equation*}
\left.\frac{\partial G(z)}{\partial \xi}\right|_{\xi=0}=G_{0}(z) B G_{0}(z) \tag{90}
\end{equation*}
$$

as well as a compact expression for the susceptibility

$$
\begin{equation*}
\kappa_{A B}=\frac{1}{2 \pi \mathrm{i}} \int_{C} \operatorname{Tr}\left[A G_{0}(z) B G_{0}(z)\right] f(z) \mathrm{d} z \tag{91}
\end{equation*}
$$

- the eigenvalues E_{λ} and eigenvectors $|\lambda\rangle$ of H_{0} lead to

$$
\begin{equation*}
G_{0}(z)=\sum_{\lambda=1}^{\mathcal{M}}|\lambda\rangle \frac{1}{z-E_{\lambda}}\langle\lambda| \tag{92}
\end{equation*}
$$

and

$$
\begin{equation*}
\kappa_{A B}=\sum_{\lambda, \nu=1}^{\mathcal{M}} A_{\lambda \nu} B_{\nu \lambda} \frac{1}{2 \pi \mathrm{i}} \int_{C} \frac{f(z)}{\left(z-E_{\lambda}\right)\left(z-E_{\nu}\right)} \mathrm{d} z \tag{93}
\end{equation*}
$$

The last complex integral can easily be evaluated:

$$
\begin{align*}
& \frac{1}{2 \pi \mathrm{i}} \int_{C} \frac{f(z)}{\left(z-E_{\lambda}\right)\left(z-E_{\nu}\right)} \mathrm{d} z \\
& \quad= \begin{cases}{\left[f\left(E_{\lambda}\right)-f\left(E_{\nu}\right)\right] /\left(E_{\lambda}-E_{\nu}\right)} & \text { for } E_{\lambda} \neq E_{\nu} \\
\partial f(E) /\left.\partial E\right|_{E=E_{\lambda}} & \text { for } E_{\lambda}=E_{\nu}\end{cases} \tag{94}
\end{align*}
$$

which completes the proof.

4.2.5 Ideal quantum gases - a summary

- the full Hamiltonian (the dynamics) of an ideal gas is specified by the one-particle Hamiltonian
- the basic statistical properties (thermodynamic potentials) within Boltzmann statistics (grandcanonical distribution) are given by the spectrum of the one-particle Hamiltonian
- the average occupation numbers of individual one-particle eigenstates are given by the corresponding one-particle eigenvalues and by the BE/FD distribution function
- the average value of a one-particle observable and its linear response to a one-particle perturbation of the Hamiltonian can be evaluated within the one-particle Hilbert space

