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Questions express propositions

In inquisitive semantics questions are regarded as expressing a
special kind of propositions.



The meaning of a sentence = its truth conditions

“To understand a proposition means to know what is the
case if it is true."

L. Wittgenstein, TLP, 4.024



The sentential meaning of declarative sentences.

I In formal semantics, sentential meaning is usually
identified with the informative content of the sentence.

I The informative content is modeled as a set of possible
worlds.

I This is applicable only to declarative sentences.
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Truth-functional semantics for classical logic

A truth-functional model: M = 〈W ,V 〉.

The relation of truth:
I p is true in w iff w ∈ V (p),
I ⊥ is not true in w ,
I α→ β is true in w iff α is not true in w or β is true in w
I α ∧ β is true in w iff α is true in w and β is true in w



Propositions as sets of information states

I In inquisitive semantics, a proposition is not just a set of
possible worlds but a set of sets of possible worlds (i.e. a
set of information states).



Inquisitive semantics

An inquisitive model: N = 〈P(W ),V 〉.

The support relation:
s � p iff s ⊆ V (p),
s � ⊥ iff s = ∅,
s � ϕ→ ψ iff for any t ⊆ s, if t � ϕ then t � ψ,
s � ϕ ∧ ψ iff s � ϕ and s � ψ,
s � ϕ

>

ψ iff s � ϕ or s � ψ.



Theorem
In every inquisitive model:
(a) every formula is supported by the empty state,
(b) support is downward persistent for all formulas,
(c) support of declarative formulas is closed under arbitrary

unions,
(d) every formula is equivalent to the inquisitive disjunction of

a finite set of declarative formulas.



Ontic and informational semantics

I As regards the declarative language the two semantics are
equivalent:

universal truth = universal support
preservation of truth = preservation of support

I The standard framework is based on ontic objects
(possible worlds) and an ontic relation of truth;

I The inquisitive framework is based on informational objects
(information states = partial representations of possible
worlds) and an informational relation of support.



Examples

a) Jane is in the cinema.
b) Is Peter in the cinema?
c) Is Jane in the cinema with Peter?
d) Peter or Jane is in the cinema.
e) Is Peter or Jane in the cinema?
f) Who is in the cinema: Peter or Jane?

g) If Peter is in the cinema, Jane is also there.
h) If Peter is in the cinema, is there also Jane?
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Intuitionistic logic

I α→ (β → α),
I (α→ (β → γ))→ ((α→ β)→ (α→ γ)),
I (α ∧ β)→ α,
I (α ∧ β)→ β,
I α→ (α ∨ β),
I β → (α ∨ β),
I (α→ γ)→ ((β → γ)→ ((α ∨ β)→ γ)),
I ⊥ → α.

I α, α→ β/β.



Basic Inquisitive Logic InqB

Intuitionistic logic plus
split (α→ (ψ

>

χ))→ ((α→ ψ)

>

(α→ χ)),
rdn ¬¬α→ α,

where α ranges over

>

-free formulas.



Logic of problems

Kolmogorov, A. (1932). Zur Deutung der intuitionistischen
Logik, Mathematische Zeitschrift, 35, 58–65.
I while classical logic captures the logical relations among

statements, intuitionistic logic captures logical relations
among problems



Medvedev logic of finite problems

I Medvedev, Y. (1962). Finite Problems. Doklady Akademii
Nauk SSSR, 3, 227–230.

I a formalization of Kolmogorov’s ideas
I determines an superintuitionistic logic: Medvedev logic of

finite problems
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I Medvedev, Y. (1962). Finite Problems. Doklady Akademii
Nauk SSSR, 3, 227–230.

I a formalization of Kolmogorov’s ideas
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A remarkable result

Theorem
The schematic fragment of inquisitive logic corresponds to
Medvedev logic of finite problems.



An example due to Ivano Ciardelli

I a certain disease may give rise to two symptoms: S1, S2

I hospital’s protocol:

if a patient presents symptom S2, the treatment is always
prescribed; if the patient only presents symptom S1, the
treatment is prescribed just in case the patient is in good
physical condition; if not, the risk associated with the
treatment outweigh the benefits, and the treatment is not
prescribed



A formalization of the protocol

The protocol:
I t ↔ s2 ∨ (s1 ∧ g)

where
I s1: the patient has symptom S1

I s2: the patient has symptom S2

I g: the patient is in good physical condtion
I t : the treatment is prescribed



Types of information

Examples of types of information:
I patient’s symptoms (S1,S2, . . .)
I patient’s conditions (good, bad)
I treatment (prescribed, not prescribed)



Types of information

Types of information correspond to questions:
I what are the patient’s symptoms: ?s1∧?s2

I whether the patient is in good physical conditions: ?g
I whether the treatment is prescribed: ?t



Dependencies among information types correspond to
logical relations among questions

t ↔ s2 ∨ (s1 ∧ g), ?s1∧?s2, ?g �?t



First-order inquisitive models

I in the first order setting: states are sets of first order
structures

I truth conditions for universal quantifier and inquisitive
existential quantifier:

I s � ∀xϕ[e] iff for every a ∈ U, s � ϕ[e(a/x)],
I s � Exϕ[e] iff for some a ∈ U, s � ϕ[e(a/x)],
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Examples

Mention-all wh-questions
I Whom did Alice invite to her birthday party? ∀x?Pax

Mention-some wh-questions
I What is a typical French dish? ExFx
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ϕ := p | ⊥ | ϕ→ ϕ | ϕ ∧ ϕ | ϕ > ϕ | Kaϕ | Eaϕ
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Epistemic modalities

the formula represents
Kap The agent a knows that p.
Ka?p The agent a knows whether p.
Ea?p The agent a entertains whether p.
Wa?p = Ea?p ∧ ¬Ka?p The agent a wonders whether p.
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I Ka(question) = statement
I Ea(question) = statement
I Wa(question) = statement



Declarative formulas

Definition
The set of declarative LIEL-formulas is the least set that
contains all atomic formulas, ⊥, Kaϕ and Eaϕ, for any
LIEL-formula ϕ, and is closed under ∧ and→.



Models

Definition
A concrete inquisitive epistemic model (CIE-model) is a triple
〈W ,ΣA,V 〉, where
I W is a nonempty set of possible worlds
I ΣA = {Σa | a ∈ A} is a set of inquisitive state maps
I V is a valuation assigning subsets of W to atomic formulas



Inquisitive state maps

I Σa assigns to every world w the issue of the agent a in the
world w

I every issue is represented by a set of information states
(those states that resolve the issue)

I every information state is represented by a set of possible
worlds (those worlds that are compatible with the
information, i.e. that are not excluded by the information)

I the information state of the agent in a world determines the
boundaries for the issue of the agent in the world
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Inquisitive state maps

Σa : W → P(P(W )), σa : W → P(W ) satisfying:
I Σa(w) is nonempty downward closed,
I σa(w) =

⋃
Σa(w),

I for any w ∈W , w ∈ σa(w) (factivity),
I for any w , v ∈W , if v ∈ σa(w), then Σa(v) = Σa(w)

(introspection).



Support conditions

I s � Kaϕ iff ∀w ∈ s: σa(w) � ϕ,
I s � Eaϕ iff ∀w ∈ s ∀t ∈ Σa(w): t � ϕ.



Theorem
In every inquisitive epistemic model:
(a) every formula is supported by the empty state,
(b) support is downward persistent for all formulas,
(c) support of declarative formulas is closed under arbitrary

unions,
(d) every formula is equivalent to the inquisitive disjunction of

a finite set of declarative formulas.



Axiomatization of IEL

INT Axioms of intuitionistic logic and modus ponens
split (α→ (ϕ

>

ψ))→ ((α→ ϕ)

>

(α→ ψ))
rdn ¬¬α→ α

S5 S5-axioms and necessitation for Ka and Ea
K2 Ka(ϕ

>

ψ)↔ (Kaϕ ∨ Kaψ)
KE Eaα↔ Kaα

(α ranges over declarative formulas)



Is inquisitive logic a non-classical logic?

Two alternative approaches:
I inquisitive logic as a superintuitionistic logic in the standard

propositional language
I inquisitive logic as a conservative extension of classical

logic in an enriched language



Picture taken from Galatos, N. Jipsen, P. Kowalski, T., Ono, H. (2007)
Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier
Science.


