Inquisitive Semantics II

Vít Punčochář

Institute of Philosophy Czech Academy of Sciences Czech Republic

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Questions express propositions

In inquisitive semantics questions are regarded as expressing a special kind of propositions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The meaning of a sentence = its truth conditions

"To understand a proposition means to know what is the case if it is true."

L. Wittgenstein, TLP, 4.024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The sentential meaning of declarative sentences.

- In formal semantics, sentential meaning is usually identified with the informative content of the sentence.
- The informative content is modeled as a set of possible worlds.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► This is applicable only to declarative sentences.

The sentential meaning of declarative sentences.

- In formal semantics, sentential meaning is usually identified with the informative content of the sentence.
- The informative content is modeled as a set of possible worlds.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

This is applicable only to declarative sentences.

The sentential meaning of declarative sentences.

- In formal semantics, sentential meaning is usually identified with the informative content of the sentence.
- The informative content is modeled as a set of possible worlds.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

This is applicable only to declarative sentences.

Truth-functional semantics for classical logic

A truth-functional model: $\mathcal{M} = \langle W, V \rangle$.

The relation of truth:

- p is true in w iff $w \in V(p)$,
- \perp is not true in *w*,
- $\alpha \rightarrow \beta$ is true in *w* iff α is not true in *w* or β is true in *w*

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• $\alpha \wedge \beta$ is true in *w* iff α is true in *w* and β is true in *w*

Propositions as sets of information states

In inquisitive semantics, a proposition is not just a set of possible worlds but a set of sets of possible worlds (i.e. a set of information states).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Inquisitive semantics

An inquisitive model: $\mathcal{N} = \langle \mathcal{P}(W), V \rangle$.

The support relation:

$$s \vDash p \text{ iff } s \subseteq V(p),$$

$$s \vDash \bot \text{ iff } s = \emptyset,$$

$$s \vDash \varphi \rightarrow \psi \text{ iff for any } t \subseteq s, \text{ if } t \vDash \varphi \text{ then } t \vDash \psi,$$

$$s \vDash \varphi \land \psi \text{ iff } s \vDash \varphi \text{ and } s \vDash \psi,$$

$$s \vDash \varphi \lor \psi \text{ iff } s \vDash \varphi \text{ or } s \vDash \psi.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Theorem

In every inquisitive model:

- (a) every formula is supported by the empty state,
- (b) support is downward persistent for all formulas,
- (c) support of declarative formulas is closed under arbitrary unions,
- (d) every formula is equivalent to the inquisitive disjunction of a finite set of declarative formulas.

Ontic and informational semantics

As regards the declarative language the two semantics are equivalent:

universal truth = universal support preservation of truth = preservation of support

- The standard framework is based on ontic objects (possible worlds) and an ontic relation of truth;
- The inquisitive framework is based on informational objects (information states = partial representations of possible worlds) and an informational relation of support.

(日) (日) (日) (日) (日) (日) (日)

a) Jane is in the cinema.

- b) Is Peter in the cinema?
- c) Is Jane in the cinema with Peter?
- d) Peter or Jane is in the cinema.
- e) Is Peter or Jane in the cinema?
- f) Who is in the cinema: Peter or Jane?
- g) If Peter is in the cinema, Jane is also there.
- h) If Peter is in the cinema, is there also Jane?

- a) Jane is in the cinema.
- b) Is Peter in the cinema?
- c) Is Jane in the cinema with Peter?
- d) Peter or Jane is in the cinema.
- e) Is Peter or Jane in the cinema?
- f) Who is in the cinema: Peter or Jane?
- g) If Peter is in the cinema, Jane is also there.
- h) If Peter is in the cinema, is there also Jane?

- a) Jane is in the cinema.
- b) Is Peter in the cinema?
- c) Is Jane in the cinema with Peter?
- d) Peter or Jane is in the cinema.
- e) Is Peter or Jane in the cinema?
- f) Who is in the cinema: Peter or Jane?
- g) If Peter is in the cinema, Jane is also there.
- h) If Peter is in the cinema, is there also Jane?

- a) Jane is in the cinema.
- b) Is Peter in the cinema?
- c) Is Jane in the cinema with Peter?
- d) Peter or Jane is in the cinema.
- e) Is Peter or Jane in the cinema?
- f) Who is in the cinema: Peter or Jane?
- g) If Peter is in the cinema, Jane is also there.
- h) If Peter is in the cinema, is there also Jane?

- a) Jane is in the cinema.
- b) Is Peter in the cinema?
- c) Is Jane in the cinema with Peter?
- d) Peter or Jane is in the cinema.
- e) Is Peter or Jane in the cinema?
- f) Who is in the cinema: Peter or Jane?
- g) If Peter is in the cinema, Jane is also there.
- h) If Peter is in the cinema, is there also Jane?

- a) Jane is in the cinema.
- b) Is Peter in the cinema?
- c) Is Jane in the cinema with Peter?
- d) Peter or Jane is in the cinema.
- e) Is Peter or Jane in the cinema?
- f) Who is in the cinema: Peter or Jane?
- g) If Peter is in the cinema, Jane is also there.
- h) If Peter is in the cinema, is there also Jane?

- a) Jane is in the cinema.
- b) Is Peter in the cinema?
- c) Is Jane in the cinema with Peter?
- d) Peter or Jane is in the cinema.
- e) Is Peter or Jane in the cinema?
- f) Who is in the cinema: Peter or Jane?
- g) If Peter is in the cinema, Jane is also there.
- h) If Peter is in the cinema, is there also Jane?

- a) Jane is in the cinema.
- b) Is Peter in the cinema?
- c) Is Jane in the cinema with Peter?
- d) Peter or Jane is in the cinema.
- e) Is Peter or Jane in the cinema?
- f) Who is in the cinema: Peter or Jane?
- g) If Peter is in the cinema, Jane is also there.
- h) If Peter is in the cinema, is there also Jane?

Intuitionistic logic

$$\alpha \rightarrow (\beta \rightarrow \alpha),$$
 $(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)),$
 $(\alpha \land \beta) \rightarrow \alpha,$
 $(\alpha \land \beta) \rightarrow \beta,$
 $\alpha \rightarrow (\alpha \lor \beta),$
 $\beta \rightarrow (\alpha \lor \beta),$
 $(\alpha \rightarrow \gamma) \rightarrow ((\beta \rightarrow \gamma) \rightarrow ((\alpha \lor \beta) \rightarrow \gamma)),$
⊥ → $\alpha.$

 $\blacktriangleright \ \alpha, \alpha \to \beta/\beta.$

Basic Inquisitive Logic InqB

Intuitionistic logic plus

split
$$(\alpha \to (\psi \otimes \chi)) \to ((\alpha \to \psi) \otimes (\alpha \to \chi)),$$

rdn $\neg \neg \alpha \to \alpha,$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

where α ranges over $\vee\mbox{-}{\rm free}$ formulas.

Kolmogorov, A. (1932). Zur Deutung der intuitionistischen Logik, *Mathematische Zeitschrift*, 35, 58–65.

 while classical logic captures the logical relations among statements, intuitionistic logic captures logical relations among problems

(ロ) (同) (三) (三) (三) (○) (○)

Medvedev logic of finite problems

- Medvedev, Y. (1962). Finite Problems. Doklady Akademii Nauk SSSR, 3, 227–230.
- a formalization of Kolmogorov's ideas
- determines an superintuitionistic logic: Medvedev logic of finite problems

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Medvedev logic of finite problems

- Medvedev, Y. (1962). Finite Problems. Doklady Akademii Nauk SSSR, 3, 227–230.
- a formalization of Kolmogorov's ideas
- determines an superintuitionistic logic: Medvedev logic of finite problems

Medvedev logic of finite problems

- Medvedev, Y. (1962). Finite Problems. Doklady Akademii Nauk SSSR, 3, 227–230.
- a formalization of Kolmogorov's ideas
- determines an superintuitionistic logic: Medvedev logic of finite problems

A remarkable result

Theorem

The schematic fragment of inquisitive logic corresponds to Medvedev logic of finite problems.

An example due to Ivano Ciardelli

- a certain disease may give rise to two symptoms: S₁, S₂
- hospital's protocol:

if a patient presents symptom S_2 , the treatment is always prescribed; if the patient only presents symptom S_1 , the treatment is prescribed just in case the patient is in good physical condition; if not, the risk associated with the treatment outweigh the benefits, and the treatment is not prescribed

(ロ) (同) (三) (三) (三) (○) (○)

A formalization of the protocol

The protocol:

 $t \leftrightarrow s_2 \lor (s_1 \land g)$

where

- s₁: the patient has symptom S₁
- ► *s*₂: the patient has symptom *S*₂
- ► g: the patient is in good physical condtion

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

t: the treatment is prescribed

Types of information

Examples of types of information:

- patient's symptoms (S_1, S_2, \ldots)
- patient's conditions (good, bad)
- treatment (prescribed, not prescribed)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Types of information correspond to questions:

- what are the patient's symptoms: ?s₁^?s₂
- whether the patient is in good physical conditions: ?g

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

whether the treatment is prescribed: ?t

Dependencies among information types correspond to logical relations among questions

 $t \leftrightarrow s_2 \lor (s_1 \land g), ?s_1 \land ?s_2, ?g \vDash ?t$

First-order inquisitive models

- in the first order setting: states are sets of first order structures
- truth conditions for universal quantifier and inquisitive existential quantifier:

(ロ) (同) (三) (三) (三) (○) (○)

- ► $s \vDash \forall x \varphi[e]$ iff for every $a \in U$, $s \vDash \varphi[e(a/x)]$,
- ▶ $s \vDash Ex \varphi[e]$ iff for some $a \in U$, $s \vDash \varphi[e(a/x)]$,

First-order inquisitive models

- in the first order setting: states are sets of first order structures
- truth conditions for universal quantifier and inquisitive existential quantifier:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $s \vDash \forall x \varphi[e]$ iff for every $a \in U$, $s \vDash \varphi[e(a/x)]$,
- $s \vDash Ex \varphi[e]$ iff for some $a \in U$, $s \vDash \varphi[e(a/x)]$,

Mention-all wh-questions

• Whom did Alice invite to her birthday party? $\forall x$? Pax

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Mention-some wh-questions

What is a typical French dish? ExFx

The language \mathcal{L}_{IEL}

$\varphi := \mathbf{p} \mid \bot \mid \varphi \rightarrow \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{K}_{\mathbf{a}}\varphi \mid \mathbf{E}_{\mathbf{a}}\varphi$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

The language \mathcal{L}_{IEL}

$\varphi := \boldsymbol{p} \mid \bot \mid \varphi \rightarrow \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \boldsymbol{K}_{a}\varphi \mid \boldsymbol{E}_{a}\varphi$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

$\varphi := \boldsymbol{p} \mid \bot \mid \varphi \rightarrow \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \boldsymbol{K}_{a}\varphi \mid \boldsymbol{E}_{a}\varphi$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

$$\varphi := \boldsymbol{p} \mid \bot \mid \varphi \rightarrow \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \boldsymbol{K}_{\boldsymbol{a}} \varphi \mid \boldsymbol{E}_{\boldsymbol{a}} \varphi$$

$$\neg \varphi =_{def} \varphi \to \bot$$

$$\varphi \lor \psi =_{def} \neg (\neg \varphi \land \neg \psi)$$

$$\varphi \leftrightarrow \psi =_{def} (\varphi \to \psi) \land (\psi \to \varphi)$$

$$?\varphi =_{def} \varphi \lor \neg \varphi$$

 $\blacktriangleright W_a \varphi =_{def} E_a \varphi \land \neg K_a \varphi$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\varphi := \boldsymbol{p} \mid \bot \mid \varphi \rightarrow \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \boldsymbol{K}_{\boldsymbol{a}} \varphi \mid \boldsymbol{E}_{\boldsymbol{a}} \varphi$$

$$\neg \varphi =_{def} \varphi \to \bot$$

$$\varphi \lor \psi =_{def} \neg (\neg \varphi \land \neg \psi)$$

$$\varphi \leftrightarrow \psi =_{def} (\varphi \to \psi) \land (\psi \to \varphi)$$

$$?\varphi =_{def} \varphi \lor \neg \varphi$$

 $\blacktriangleright W_a \varphi =_{def} E_a \varphi \land \neg K_a \varphi$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\varphi := \boldsymbol{p} \mid \bot \mid \varphi \rightarrow \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \boldsymbol{K}_{\boldsymbol{a}} \varphi \mid \boldsymbol{E}_{\boldsymbol{a}} \varphi$$

$$\neg \varphi =_{def} \varphi \to \bot$$

$$\varphi \lor \psi =_{def} \neg (\neg \varphi \land \neg \psi)$$

$$\varphi \leftrightarrow \psi =_{def} (\varphi \to \psi) \land (\psi \to \varphi)$$

$$?\varphi =_{def} \varphi \lor \neg \varphi$$

 $\blacktriangleright W_a \varphi =_{def} E_a \varphi \wedge \neg K_a \varphi$

the formula	represents
Кар	The agent <i>a</i> knows that <i>p</i> .
K _a ?p	The agent <i>a</i> knows whether <i>p</i> .
E _a ?p	The agent <i>a</i> entertains whether <i>p</i> .
$W_a?p = E_a?p \wedge \neg K_a?p$	The agent <i>a</i> wonders whether <i>p</i> .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

the formula	represents
Кар	The agent <i>a</i> knows that <i>p</i> .
K _a ?p	The agent <i>a</i> knows whether <i>p</i> .
E _a ?p	The agent <i>a</i> entertains whether <i>p</i> .
$W_a?p=E_a?p\wedge eg K_a?p$	The agent <i>a</i> wonders whether <i>p</i> .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

the formula	represents
Кар	The agent <i>a</i> knows that <i>p</i> .
K _a ?p	The agent <i>a</i> knows whether <i>p</i> .
E _a ?p	The agent <i>a</i> entertains whether <i>p</i> .
$W_a?p = E_a?p \wedge \neg K_a?p$	The agent <i>a</i> wonders whether <i>p</i> .

the formula	represents
Кар	The agent <i>a</i> knows that <i>p</i> .
K _a ?p	The agent <i>a</i> knows whether <i>p</i> .
E _a ?p	The agent <i>a</i> entertains whether <i>p</i> .
$W_a?p = E_a?p \wedge \neg K_a?p$	The agent <i>a</i> wonders whether <i>p</i> .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- ► *K*_a(question) = statement
- ► *E*_a(question) = statement
- ► W_a(question) = statement

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Declarative formulas

Definition

The set of declarative \mathcal{L}_{IEL} -formulas is the least set that contains all atomic formulas, \perp , $K_a \varphi$ and $E_a \varphi$, for any \mathcal{L}_{IEL} -formula φ , and is closed under \wedge and \rightarrow .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Models

Definition

A concrete inquisitive epistemic model (CIE-model) is a triple $\langle W, \Sigma_A, V \rangle$, where

- W is a nonempty set of possible worlds
- $\Sigma_A = {\Sigma_a \mid a \in A}$ is a set of inquisitive state maps
- V is a valuation assigning subsets of W to atomic formulas

(ロ) (同) (三) (三) (三) (○) (○)

Σ_a assigns to every world w the issue of the agent a in the world w

- every issue is represented by a set of information states (those states that resolve the issue)
- every information state is represented by a set of possible worlds (those worlds that are compatible with the information, i.e. that are not excluded by the information)
- the information state of the agent in a world determines the boundaries for the issue of the agent in the world

(ロ) (同) (三) (三) (三) (○) (○)

- Σ_a assigns to every world w the issue of the agent a in the world w
- every issue is represented by a set of information states (those states that resolve the issue)
- every information state is represented by a set of possible worlds (those worlds that are compatible with the information, i.e. that are not excluded by the information)
- the information state of the agent in a world determines the boundaries for the issue of the agent in the world

(ロ) (同) (三) (三) (三) (○) (○)

- Σ_a assigns to every world w the issue of the agent a in the world w
- every issue is represented by a set of information states (those states that resolve the issue)
- every information state is represented by a set of possible worlds (those worlds that are compatible with the information, i.e. that are not excluded by the information)
- the information state of the agent in a world determines the boundaries for the issue of the agent in the world

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Σ_a assigns to every world w the issue of the agent a in the world w
- every issue is represented by a set of information states (those states that resolve the issue)
- every information state is represented by a set of possible worlds (those worlds that are compatible with the information, i.e. that are not excluded by the information)
- the information state of the agent in a world determines the boundaries for the issue of the agent in the world

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\Sigma_a \colon W \to \mathcal{P}(\mathcal{P}(W)), \, \sigma_a \colon W \to \mathcal{P}(W)$ satisfying:

• $\Sigma_a(w)$ is nonempty downward closed,

•
$$\sigma_a(w) = \bigcup \Sigma_a(w),$$

- for any $w \in W$, $w \in \sigma_a(w)$ (factivity),
- for any w, v ∈ W, if v ∈ σ_a(w), then Σ_a(v) = Σ_a(w) (introspection).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Support conditions

- $\boldsymbol{s} \vDash \boldsymbol{K}_{\boldsymbol{a}} \varphi$ iff $\forall \boldsymbol{w} \in \boldsymbol{s}$: $\sigma_{\boldsymbol{a}}(\boldsymbol{w}) \vDash \varphi$,
- $s \vDash E_a \varphi$ iff $\forall w \in s \ \forall t \in \Sigma_a(w)$: $t \vDash \varphi$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Theorem

In every inquisitive epistemic model:

- (a) every formula is supported by the empty state,
- (b) support is downward persistent for all formulas,
- (c) support of declarative formulas is closed under arbitrary unions,
- (d) every formula is equivalent to the inquisitive disjunction of a finite set of declarative formulas.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Axiomatization of IEL

INT Axioms of intuitionistic logic and modus ponens split $(\alpha \rightarrow (\varphi \lor \psi)) \rightarrow ((\alpha \rightarrow \varphi) \lor (\alpha \rightarrow \psi))$

(日) (日) (日) (日) (日) (日) (日)

- rdn $\neg \neg \alpha \rightarrow \alpha$
- S5 S5-axioms and necessitation for K_a and E_a
- K2 $K_a(\varphi \lor \psi) \leftrightarrow (K_a \varphi \lor K_a \psi)$
- $\mathsf{KE} \quad \mathbf{E}_{\mathbf{a}} \alpha \leftrightarrow \mathbf{K}_{\mathbf{a}} \alpha$

(α ranges over declarative formulas)

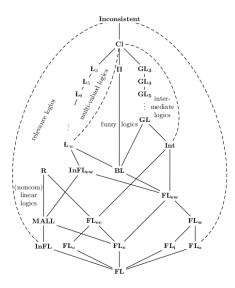
Is inquisitive logic a non-classical logic?

Two alternative approaches:

 inquisitive logic as a superintuitionistic logic in the standard propositional language

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 inquisitive logic as a conservative extension of classical logic in an enriched language



Picture taken from Galatos, N. Jipsen, P. Kowalski, T., Ono, H. (2007) Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier Science.