SubjectsSubjects(version: 945)
Course, academic year 2023/2024
   Login via CAS
Numerical Modelling of Electrical Engineering Problems 2 - NMOD024
Title: Numerické modelování problémů elektrotechniky 2
Guaranteed by: Department of Numerical Mathematics (32-KNM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2018
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: doc. RNDr. Tomáš Vejchodský, Ph.D.
Classification: Mathematics > Mathematical Modeling in Physics, Numerical Analysis
Co-requisite : NMOD023
Interchangeability : NMNV462
Is incompatible with: NMNV462
Is interchangeable with: NMNV462
Annotation -
Last update: VEJCHOD (19.02.2007)
Description of the mathematical model of the semiconductor device, its numerical solution by the box method and a survey of approches for a posteriori error estimation.
Aim of the course -
Last update: VEJCHOD/MFF.CUNI.CZ (03.04.2008)

Students will understand the mathematical modelling of the semiconductor devices and the box method.

Students will get an overview about the techniques of the a posteriori error estimation for the elliptic and parabolic partial differential equations.

Literature - Czech
Last update: T_KNM (17.05.2008)

Selberherr S.: Analysis and Simulation of Semiconductor Devices. Wien, Springer Verlag, l984.

Markowich P.A.: The Stationary Semiconductor Equations. Wien, Springer Verlag, l986.

Křížek M., Neittaanmaki P.: Finite Element Approximation of Variational Problems and Applications. Harlow, Longman, l990.

Křížek M., Segeth K.: Numerické modelování problémů elektrotechniky. Praha, Karolinum, 2001.

Teaching methods -
Last update: T_KNM (17.05.2008)

Lectures in a lecture hall.

Requirements to the exam -
Last update: T_KNM (17.05.2008)

Examination according to the syllabus.

Syllabus -
Last update: VEJCHOD (19.02.2007)

The fundamental description of the electrostatic potential, density of elektrons, and density of holes in a semiconductor device by a system of three (in general nonlinear) partial differential equations of second order (van Roosbroeck system).

Overview of mathematical properties of the model and of principal classes of numerical methods for its solution.

A survey of approaches for a posteriori error estimation: explicit and implicit residual estimates, hierarchic estimates, estimates based on the adjoint and on the dual problem, estimates based on the postprocessing.

Entry requirements -
Last update: T_KNM (17.05.2008)

Elementary knowledge of partial differential equations, functional analysis and the finite element method is assumed. This is a continuation of the lectures Numerical Modelling of Electrical Engineering Problems 1 but exceptionally it is possible to register the part 2 without the part 1.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html