SubjectsSubjects(version: 945)
Course, academic year 2023/2024
   Login via CAS
Differential Geometry in General Theory of Relativity - NGEM027
Title: Diferenciální geometrie v obecné teorii relativity
Guaranteed by: Institute of Theoretical Physics (32-UTF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2008
Semester: winter
E-Credits: 5
Hours per week, examination: winter s.:2/1, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Additional information: http://utf.mff.cuni.cz/vyuka/GEOM027/
Guarantor: prof. RNDr. Pavel Krtouš, Ph.D.
Class: Diferenciální rovnice
Teorie funkcí, funkc. analýza a teorie potenciálu
Classification: Physics > Theoretical and Math. Physics
Incompatibility : NTMF037
Annotation -
Last update: prof. RNDr. Pavel Krtouš, Ph.D. (09.02.2004)
Application of differential geometry in relativity theory. Fundamentals of differential geometry, classical field theory and general relativity. Elementary knowledge of special relativity is assumed. For the students of mathematics and informatics.
Literature - Czech
Last update: prof. RNDr. Pavel Krtouš, Ph.D. (09.02.2004)
  • K. Kuchař: Základy obecné teorie relativity, Academia, Praha 1968.
  • C. W. Misner, K. S. Thorne a J. A. Wheeler: Gravitation, Freedman, San Francisco 1973.
  • S. W. Hawking a G. F. R. Ellis: The Large Scale Structure of Space-Time, Cambridge Univ. Press, Cambridge 1973.
Syllabus -
Last update: prof. RNDr. Pavel Krtouš, Ph.D. (09.02.2004)

Syllabus:

Minkowski spacetime:
Events, coordinates, space and time, speed of light and simultaneity, Minkowski metric.
Gravitation and the structure of a classical field theory:
Equation of motion of a particle, laws of force, gravitation as a curved space.
Concept of field, least action principle, quantum field and particles, example of scalar field in Minkowski spacetime.
Tensors and differentiable manifold:
Tensor algebra, examples of tensors.
Manifold, tangent vectors and forms, diffeomorfisms and Lie derivative.
Geometrical quantities:
Metric, examples of metrics.
Parallel transport and covariant derivative, connection space, curvature, metric connection.
Volume element and integration, Gauss law.
Gravitational field and description of mass:
Equation of motion of a free particle -- geodesics, gravitational field as a geometry of spacetime, homogeneous gravitational field and the field of a central source, Penrose diagrams.
Field equations
Hilbert action, Einstein equations, scalar and electromagnetic field, relativistic formulation of the continuum theory.
Examples of solution of Einstein equations:
Schwarzschild metric, motion of particles in a central field, analytic extension of the Schwarzschild metric, black hole, causal structure.
de Sitter solution, spacetime of a cosmic string.
Physical applications:
Relativistic stars, hydrostatic equilibrium and TOV equation, final stages of stellar evolution.
Cosmological models, cosmic histories.
Gravitational waves, exact solution, linearization of gravitation, detectors of gravitational waves and experiment.
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html